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Abstract

This paper is concerned with the problem to select non-zero par-

tial correlations under normality-assumed population. It is cumber-

some to calculate variable selection criteria for all subsets of pairs

of variables when the number of variables is large even though less

than sample size. To tackle this problem, we propose a fast and

consistent variable selection method based on Baysian information

criterion (BIC). The consistency of the method is provided in a high-

dimensional asymptotic framework such that the sample size and the

number of variables both tend toward infinity under a certain rule.

Through numerical simulations, it is shown that the proposed method

has a high probability of selecting the true subset of pairs of non-zero

partial correlation.
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1. Introduction

Let X = (X1, . . . , Xp)
′ be a p-dimensional random vector following a

multivariate normal distribution Np(µ,Σ) with unknown mean µ and un-

known nonsingular covariance matrix Σ. We are interested in identifying

or estimating the set of nonzero partial correlations. This problem is called

the covariance selection problem (Dempster (1972)) or the Gaussian concen-

tration graph selection problem (see, e.g., Cox and Wermuth, 1996). Here,

the partial correlation of Xi and Xj is defined as the usual correlation after

removing the effects of the other variables.

We often express the j1, j2 components of X by (Xj1 , Xj2) and the j1, j2

components of Σ by σj1j2 . Suppose that ρj1j2·(−j) denotes the partial correla-

tion between Xj1 and Xj2 after removing the effects of all the other variables,

denoted by (−j), where j = (j1, j2). Let ω be the full set or model. We are

interested in finding the true model of which the pairs satisfy ρj1j2·(−j) ̸= 0.

The true model is described as

J∗ = {(j1, j2) | ρj1j2·(−j) ̸= 0, j1, j2 ∈ {1, 2, . . . , p}, j1 < j2}.

Note that J∗ is a subset of ω = {(j1, j2) | j1, j2 = 1, 2, . . . , p, j1 < j2}, but is
unknown.

Now, we have k = 2p(p+1)/2 candidate models by considering whether

ρj1j2·(−j) ̸= 0 or ρj1j2·(−j) = 0 for each (j1, j2) ∈ ω. These candidate models

are denoted by MJ or simply J , which is a subset of ω.
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Often, we use AIC or BIC to find the true model, where these criteria are

as follows:

GICJ,d = −2 logL(Σ̂J) + dgJ , (1.1)

where L(Σ̂J) is the maximum likelihood, dgJ is the penalty term, and gJ is

the number of unknown parameters. The d values for AIC and BIC are 2 and

log n, respectively, and gJ is equal to p plus the number of nonzero partial

correlations.

For selecting non-zero partial correlations problem, the best subset de-

duced from a variable selection criterion such as AIC and BIC typically de-

fined as the subset of pairs of variables which minimize the criterion among

all candidate subsets. Identifying this best subset generally involves search-

ing through all candidate subsets. To search all candidate subsets, it needs

to calculate the variable selection criteria for 2p(p−1)/2 − 1 subsets. Thus,

searching through all candidate subsets will not be feasible when p is large,

since the possible number of candidate models become large, and so we need

another search method. A practicable selection method was proposed by

Nishii et al. (1988) and Zhao et al. (1986) in searching problem of the true

subset of explanatory variables in some multivariate models. This method

is focussing on the difference of the variable selection criteria for the full set

and the one with removing a variable in the full set. If the variable selection

criterion for the subset where a variable is removed from full set is larger

than the one for full set, then the removed variable is regarded as an element

of the best subset. This is called knock-one-out (KOO) method. Fujikoshi

(2022) reviewed KOO methods for multivariate regression and discriminant

analysis. Applying KOO method with the problem of the selecting non-zero

partial correlations, the best subset can be obtained as the pairs of variables

such that the value of variable selection criterion for ω with removing the

pair is larger than the one for ω.

Consistency is an important property of the variable selection method.

This is defined as the probability that the selected model coincides with the

true model converges to 1 as the sample size goes to infinity. Often, it is
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discussed that BIC has consistency but AIC does not. Nishii et al. (1988)

noted that BIC has consistency under the KOO method. Such a consistent

variable selection method is going to be likely to select a true variable. Since

one cannot know the true subset, one should use the consistent variable

selection method with high probability of selecting true variable. It may be

noted that there are many cases that the number of variables p is less than

the sample size n, but both are close (as an example, see Appendix B). In

such a case, the probability of selecting true variable by consistent variable

selection method may be low.

It may be noted that the theory of variable selection methods would be

improved by using a high-dimensional asymptotic framework such that the

sample size and the number of variables both tend toward infinity while the

ratio of them converges a positive constant less than 1 (see, e.g., Fujikoshi

et al., 2010). For example, Yanagihara et al. (2015) improved AIC for mul-

tivariate linear models and propose an improvement for searching through

all candidate subsets. Besides, Yanagihara et al. (2015) noted that BIC

does not have a consistency under a high-dimensional asymptotic frame-

work. Consistent KOO methods are studied by Bai et al. (2018), Sakurai

and Fujikoshi (2020) and Oda and Yanagihara (2020, 2021) for multivariate

regression problem; Fujikoshi and Sakurai (2019), Oda et al. (2020) for dis-

criminant analysis. It is not studied for selecting non-zero partial correlation

problem.

In this paper, we consider the consistency of the KOO method based on

the BIC for selecting non-zero partial correlation problem, which is defined

as (1.1) with d being log n, under a high-dimensional asymptotic framework:

A1: As n, p → ∞ through (n, p) ∈ I1 = {(n, p) ∈ N2 : n > p4p/(n−p+1), n−
p > 11}, p/n → 0 and (log p)/ log n → ℓ ∈ [0, 1/4).

Note that each of the followings are sufficient conditions for A1.

• p = O(nδ), δ ∈ (0, 1/4).

• p = O(log n).
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Assumption A1 means that n always tends toward infinity, but p is allowed

to diverge under restriction that (log p)/ log n → ℓ ∈ [0, 1/4). This means

that BIC with KOO method might have high probability for selecting true

set for the case that n is much larger than p.

We also propose a new consistent KOO method under a high-dimensional

asymptotic framework:

A2: As n, p → ∞ through I2 = {(n, p) ∈ N2 : n − p > 11}, either one of

the following convergences holds.

• p/n → 0 and (log p)/ log n → ℓ ∈ [0, 1).

• p/n → c ∈ (0, 1).

Since A2 ⇐= A1, A2 is milder than A1. From assumption A2, the true model

is selected with high probability for the case in which p is large compared to

n, but p < n.

In recent years, regularization methods have been studied intensively.

In Gaussian concentration graph selection problem, it is able to select con-

ditional independence of variables by glasso proposed by Friedmann et al.

(2008). Generally, glasso is powerful tool to estimate models. However, it

needs heavy computations through algorithms. On the other hand, it may

be pointed that our KOO method needs to compute p(p− 1)/2 selecting cri-

teria. Computational speed compared to such a regularized model selection

methods is also reported in Oda and Yanagiraha (2020). In addition, our

method has consistency for high-dimensional asymptotic frameworks above.

The present paper is organized as follows. In Section 2, we state the main

results of this paper, which include the probability that the selected model

is identical to the true model converges to 1. Small scale simulation studies

are carried out, and the results are in Section 3. Concluding the paper is

given in Section 4. Proofs of the main theorems and the an example of the

real data application are provided in the Appendix for interested readers.
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2. KOO method

2.1. Explicit form of KOO statistic

In this subsection, we present the explicit form of the KOO statistic

underlying our method. The partial correlation ρj1j2·(−j) of Xj1 and Xj2

given X(−j) is expressed as follows:

ρj1j2·(−j) =
σj1j2·(−j)

√
σj1j1·(−j)

√
σj2j2·(−j)

,

where

Σj1j1·(−j) :=

(
σj1j1·(−j) σj1j2·(−j)

σj2j1·(−j) σj2j2·(−j)

)
:=

(
σj1j1 σj1j2

σj2j1 σj2j2

)
− σj1j2·(−j)Σ

−1
(−j)(−j)σ

′
j1j2·(−j), (2.1)

σj1j2·(−j) is the partition matrix of Σ consisting of the (j1, j2) rows after

removing the (j1, j2) columns, and Σ(−j)(−j) is the partition matrix of Σ after

removing the (j1, j2) columns and (j1, j2) rows. Let S = (sj1j2) be the sample

covariance matrix based on a sample of size n + 1. Then, using partition

matrices of S similar to Σ, the sample partial correlation is obtained as

rj1j2·(−j) =
sj1j2·(−j)

√
sj1j1·(−j)

√
sj2j2·(−j)

.

It is well known that there is a close relationship between the partial corre-

lation coefficients and the coefficients of Σ−1 = (σj1j2), in fact that

ρj1j2·(−j) = (−1)δj1j2+1 ρj1j2√
ρj1j1

√
ρj2j2

= (−1)δj1j2+1 σj1j2

√
σj1j1

√
σj2j2

.

Here, δj1j2 denotes the Kronecker delta and ρj1j2 denotes (j1, j2) element of

the inverted correlation matrix. Thus, the case of ρj1j2·(−j) = 0 is equivalent

to the one of σj1j2 = 0.
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Our KOO method is specifically as the following way. Let

Tj1j2,d = GICω\j,d −GICω,d (j = (j1, j2)), (2.2)

where GIC is defined by (1.1). Following the issue in Nishii et al. (1988) and

Zhao et al. (1986), we define the chosen model by KOO method as

ĴG,d = {(j1, j2) | Tj1j2,d > 0, 1 ≤ j1 < j2 ≤ p}. (2.3)

We call Tj1j2,d as KOO statistics. It is noted that Bai et al. (2018) define

slightly modified statistics as KOO statistics in multivariate regression model

selection. We can state the selection procedure as follows: if Tj1j2,d is positive,

(j1, j2) is selected, and if Tj1j2,d is not positive, (j1, j2) is not selected.

Now, we give an explicit form of Tj1j2,d. It is considered that Tj1j2,d in (2.2)

is related to the likelihood ratio criterion for the hypothesis ρj1j2·(−j) = 0. In

fact, we can express it as

Tj1j2,d = −2 logL(Σ̂ω\j,d) + dgω\j

−
{
−2 logL(Σ̂ω,d) + dgω

}
= −2 log LRT− d,

where LRT = L(Σ̂ω\j,d)/L(Σ̂ω,d) is a likelihood ratio statistic for testing

the hypothesis ρj1j2·(−j) = 0. It can be seen that the term d (> 0) in the

statistics Tj1j2,d is like a penalty term to suppress the overestimation due to

LRT. We now consider the term Lj1j2 = −2 log LRT. Using Fujikoshi et al.

(2010, Theorem 4.3.2), we have

−2 log LRT = −n log(1− r2j1j2·(−j)).

Thus, an explicit form of Tj1,j2,d and its selection procedure are obtained as

Tj1,j2,d = −n log(1− r2j1j2·(−j))− d > 0 ⇔ (j1, j2) ∈ Ĵd. (2.4)
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2.2. Consistencies of KOO methods based on BIC

In this subsection we deduce consistencies of KOO methods based on

BIC and its modifications for selecting Gaussian graphical model, i.e., we

prove the consistencies for selecting the method (2.4) with d = log n and

its modification. Before stating these results, we show the needed condition

below.

A3: inf
p∈N

min
j1j2∈J∗

ρ2j1j2·(−j) > 0.

Note that A3 guarantees that the squared partial correlations in the true

model J∗ are positive uniformly in p ∈ N. Our main results of this paper are

stated below. The proofs will be given in the Appendix.

First we give the case of d = log n. Under the assumptions A1 and A3,

we have proved the consistency of BIC with KOO method, i.e. the limiting

probability that Ĵlogn coincides with J∗ becomes 1, which is given in the

following theorem.

Theorem 2.1. Under assumptions A1 and A3,

lim
n,p→∞
(n,p)∈I1

Pr
(
Ĵlogn = J∗

)
= 1.

Remember that the condition n > p4p/(n−p+1) in I1. This is a sufficient

condition that the triangular array

an,p =
1

4

n− 1

n− p+ 1

log n

log p
((n, p) ∈ I1).

is greater than 1, under which Theorem 2.1 is shown. It is noted that the

condition n > p4p/(n−p+1) requires quite large sample size n compared to the

dimensionality p. For example, n ≥ 160, 228 when p = 20, n ≥ 810, 395

when p = 30, and so on.

Next, we give an improvement of BIC penalty term and relax the con-

dition for consistency of the KOO method. Through the proof of Theorem
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2.1, if we set

d = 4
n

n− p
log n,

then the triangular array an,p in the proof of Theorem 2.1 is given by

an,p =
log n

log p
> 1 ((n, p) ∈ I2).

Using the same reduction of the proof of Theorem 2.1, we can show a con-

sistency of the model selection (2.4) with d = {4n/(n − p)} log n, which is

given as the following theorem.

Theorem 2.2. Under assumptions A2 and A3,

lim
n,p→∞
(n,p)∈I2

Pr
(
Ĵ4{n/(n−p)} logn = J∗

)
= 1.

We mention some remarks for Theorem 2.2. We do not make any as-

sumption for the order of q = |J∗| ≤ p(p − 1)/2, the size of the true model

J∗, under the assumption A2 and A3. On the other hand, “q is fixed” or

“γn = q/n → γ < c” is assumed in the previous studies (see, e.g., Bai

et al. (2018) and Fujikoshi (2022)). We refer to the model selection by

Ĵ4{n/(n−p)} logn as the KOO method based on modified BIC.

3. Simulation Studies

In this section, we numerically examine the performance of the KOO

method based on modified BIC in large-dimensional framework with different

settings. In Section 2, we proposed an improvement of d = log n in (2.4) as

d = {4n/(n− p)} log n. The KOO method chooses the model

ĵMB = Ĵ4{n/(n−p)} logn = {(j1, j2) | Lj1,j2 − 4{n/(n− p)} log n > 0}}.

For comparison, we also report for KOO methods with AIC, i.e., d = 2, BIC,

i.e., d = log n, and GIC for d =
√
n. Note that the consistency for GIC for
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d =
√
n has been shown under the asymptotic framework that n, p → ∞

while p/n → c ∈ (0, 1) by following the proof of the consistency given in

Fujikoshi and Sakurai (2019). We do not write them due to the redundant

derivations, but they have written in our working paper (Fujikoshi et al.,

2022). Specifically, the KOO methods with AIC, BIC and GIC for d =
√
n

choose the model

ĵ A = Ĵ2 = {(j1, j2) | Lj1,j2 − 2 > 0}},

ĵ B = Ĵlogn = {(j1, j2) | Lj1,j2 − log n > 0}},

ĵ G = Ĵ√n = {(j1, j2) | Lj1,j2 −
√
n > 0}}.

In addition, we computed the probabilities of selecting the true model using

glasso proposed by Friedmann et al. (2008) for the case in which p ∈ {10, 50}.
Following Friedmann et al. (2008), we consider sparse and dense setting.

The sparse setting is the bidiagonal matrix: (Σ−1)ii = 1, (Σ−1)i,i−1 =

(Σ−1)i−1,i = −0.5, and zero otherwise. In the dense setting, Σ−1 = I+ 1p1
′
p.

Here, (Σ−1)ij denotes (i, j)th entry in the matrix, i, j ∈ {1, . . . , p} and 1p

denotes a p-dimensional vector of 1’s. In addition, we consider the identity

setting. We take the sample size as n ∈ {200, 350, 500, 700, 1000} and the

dimension p ∈ {10, 50}.
Table 1 presents the averaging the true selection times over 10, 000 simu-

lations. The columns in the table represent the case, with first four columns

for KOO methods (modified BIC, AIC, BIC and GIC with d =
√
n) and the

last for glasso. Here, the result by glasso is given by using the R package

“CVglasso”, which is obtained in https://github.com/MGallow/CVglasso.

The upper panel is reserved for sparse case, the middle panel for dense case

and the lower panel for identity case.

To begin with, we observe a high performance of selecting the true model

in all cases of p and n for KOO methods with modified BIC and GIC. Com-

paring the case in (n, p) = (200, 50) shows that the performance of modified

BIC is superior than the one of the GIC under the identity setting. The

dense setting depicts opposite exceptions compared to the identity setting.
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The performance under dense setting appears to perform well except for the

case in which n = 200. In our dense setting, although all partial correlations

are non-zero, the performance remains high.

We mention for the performance of KOO method based on AIC and BIC.

Although BIC with KOO method has been proven to be consistent, the

performance of selecting the true model is not so good. Even for the case

that (n, p) = (1000, 10) and the sparse setting, the proportion of the true

model is 0.7. It is expected that the proportion gets close to 1 if n becomes

large for fixed p (= 10). The performance for p = 50 is not acceptable for BIC

under sparse and identity settings. The performance of AIC is not acceptable

under our settings.

The performance of selecting the true model is poor for glasso in our

settings. The proportion of the true model is 0 in the sparse and the dense

settings, and is about 0.4 in the identity case.

Next, we concentrate on the comparisons of performance among KOO

methods base on modified BIC and GIC for p > 50, especially examine sim-

ulation for some r = p/n ≥ 1/3. We set p = ⌊nr⌋ for r ∈ {1/3, 1/2, 3/5, 3/4}
and n ∈ {200, 350, 500, 700, 1000, 1500, 2000}. Here, the notation “⌊ ⌋” rep-

resents the floor function. The results given in Table 2 is the same as that

in Table 1. The columns in the table represent the case for n. The rows are

reserved for r in each of sparse, dense and identity cases.

The results are very similar to that in Table 1. First, it requires large n to

obtain high performance as r gets close to 1. In the sparse setting, modified

BIC with KOO method select the true model with higher probability than

GIC, although it needs relatively larger sample size. Its highly performance

is particularly remarkable under identity setting. On the other hand, KOO

method with modified BIC seems to be inferior than that with GIC under

the dense setting. Focus on the case of the combination of (n, p) that the

proportion of true model is close to 1 (e.g., ≥ 0.95), if GIC is close to 1 then

the modified BIC is also close. However the converse does not hold. In this

sense, we recommend to use the modified BIC with KOO method if we are
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Table 1: Proportion of selecting all nonzero partial correlations when p ∈
{10, 50}.

Sparse

p n ĵMB ĵ A ĵ B ĵ G glasso

10

200 0.99 0.01 0.48 0.99 0.00
350 1.00 0.01 0.60 1.00 0.00
500 1.00 0.01 0.60 1.00 0.00
700 1.00 0.01 0.71 1.00 0.00
1000 1.00 0.01 0.75 1.00 0.00

50

200 0.39 0.00 0.00 0.31 0.00
350 1.00 0.00 0.00 0.93 0.00
500 1.00 0.00 0.00 0.99 0.00
700 1.00 0.00 0.00 1.00 0.00
1000 1.00 0.00 0.00 1.00 0.00

Dense

p n ĵMB ĵ A ĵ B ĵ G glasso

10

200 0.94 1.00 1.00 1.00 0.00
350 1.00 1.00 1.00 1.00 0.00
500 1.00 1.00 1.00 1.00 0.00
700 1.00 1.00 1.00 1.00 0.00
1000 1.00 1.00 1.00 1.00 0.00

50

200 0.09 1.00 1.00 0.84 0.00
350 1.00 1.00 1.00 1.00 0.00
500 1.00 1.00 1.00 1.00 0.00
700 1.00 1.00 1.00 1.00 0.00
1000 1.00 1.00 1.00 1.00 0.00

Identity

p n ĵ IB ĵ A ĵ B ĵ G glasso

10

200 1.00 0.00 0.33 0.99 0.40
350 1.00 0.00 0.47 1.00 0.38
500 1.00 0.00 0.55 1.00 0.38
700 1.00 0.00 0.61 1.00 0.38
1000 1.00 0.00 0.67 1.00 0.37

50

200 1.00 0.00 0.00 0.26 0.48
350 1.00 0.00 0.00 0.93 0.44
500 1.00 0.00 0.00 0.99 0.43
700 1.00 0.00 0.00 1.00 0.41
1000 1.00 0.00 0.00 1.00 0.40
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going to select the true model since one cannot know whether the true model

is sparse or dense.

4. Discussion and conclusions

Fast and consistent variable selection method is proposed for conditional

independence under Gaussian case. Our primary proposed method is based

on applying the idea of the selection in Nishii et al. (1988) and Zhao et

al. (1986) to modified BIC, and is composed of simple, computationally

efficient. Computation of our method is remarkably faster than glasso. De-

tails are reported in Oda and Yanagiraha (2020) for the problem of selecting

multivariate regression.

We also compare our proposed methods with glasso for the precision of se-

lecting true model. The primary proposed method generally outperforms in

most cases. It may be mentioned that glasso can apply the high-dimensional

data whose the dimensionality is larger than the sample size, however pro-

posed method cannot. Improving our proposed method for high-dimensional

case is left as a future work.

A Proofs of Theorem 2.1-2.2

In this Appendix, we present the proofs of Theorem 2.1-2.2. Before stat-

ing them, we give preliminary results. In subsections A2 and A3 we state

the proof of consistencies.

Hereafter, we use the notation χ2
f as the random variable distributed as

chi-square distribution with f degrees of freedom.
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Table 2: Proportion of selecting all nonzero partial correlations.
Sparse n
r 200 350 500 700 1000 1500 2000

1/3
ĵMB 0.05 0.97 0.99 0.99 0.99 0.99 0.99

ĵ G 0.03 0.09 0.24 0.50 0.79 0.95 0.99

1/2
ĵMB 0.00 0.22 0.95 0.98 0.98 0.98 0.98

ĵ G 0.00 0.00 0.00 0.00 0.00 0.05 0.32

3/5
ĵMB 0.00 0.00 0.39 0.96 0.98 0.97 0.98

ĵ G 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3/4
ĵMB 0.00 0.00 0.00 0.00 0.74 0.96 0.96

ĵ G 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dense n
r 200 350 500 700 1000 1500 2000

1/3
ĵMB 0.01 0.65 1.00 1.00 1.00 1.00 1.00

ĵ G 0.65 1.00 1.00 1.00 1.00 1.00 1.00

1/2
ĵMB 0.00 0.02 0.49 0.99 1.00 1.00 1.00

ĵ G 0.22 0.89 1.00 1.00 1.00 1.00 1.00

3/5
ĵMB 0.00 0.00 0.03 0.60 1.00 1.00 1.00

ĵ G 0.07 0.59 0.97 1.00 1.00 1.00 1.00

3/4
ĵMB 0.00 0.00 0.00 0.00 0.07 0.96 1.00

ĵ G 0.01 0.09 0.43 0.90 1.00 1.00 1.00
Identity n
r 200 350 500 700 1000 1500 2000

1/2
ĵMB 0.99 0.99 0.99 0.99 0.99 0.99 0.99

ĵ G 0.02 0.08 0.22 0.49 0.79 0.95 0.99

1/3
ĵMB 0.97 0.98 0.98 0.98 0.98 0.98 0.98

ĵ G 0.00 0.00 0.00 0.00 0.00 0.05 0.33

3/5
ĵMB 0.97 0.97 0.97 0.98 0.97 0.98 0.97

ĵ G 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3/4
ĵMB 0.96 0.96 0.96 0.96 0.96 0.96 0.96

ĵ G 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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A1. Preliminary Results

We consider the distribution of the statistic

Tj1,j2,d + d = −n log(1− r2j1,j2·(−j)).

Using r2j1j2·(−j) = s2j1j2·(−j) ·{sj1j1·(−j)sj2j2·(−j)}−1, we can write

−n log(1− r2j1,j2·(−j)) = n log(1 +Qj1j2·(−j)),

where

Qj1j2·(−j) =
s2j1j2·(−j)

sj1j1·(−j)sj2j2·(−j) − s2j1j2·(−j)

. (A.1)

Thus, it is necessary to study the distribution of Qj1j2·(−j) in order to ob-

tain the distribution of −n log(1− r2j1,j2·(−j)). For this purpose, we have the

following theorem.

Theorem A1. Let Qj1j2·(−j) be the statistic defined by (A.1). Then we can

express it as a ratio of independent chi-square variates:

Qj1j2·(−j) =

Z +
ρj1j2·(−j)√
1− ρ2j1j2·(−j)

√
χ2
m

2

χ2
m−1

(A.2)

where Z denotes the variate distributed as the standard normal distribution,

χ2
m denotes chi-square variate with m = n− (p− 2) degrees of freedom, χ2

m−1

denotes chi-square variate with m− 1 = n− p+1 degrees of freedom, and Z,

χ2
m and χ2

m−1 are independent.

Hereafter, we abbreviate the formula (A.2) as

Qj1j2·(−j) = χ2
1

(
τ 2
) {

χ2
m−1

}−1
, (A.3)

where χ2
1(λ) is noncentral chi-square variate with 1 degree of freedom and

the noncentrality parameter λ,

τ 2 = ρ2j1j2·(−j)(1− ρ2j1j2·(−j))
−1χ2

m,

and χ2
1(·), χ2

m and χ2
m−1 are independent.
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Proof of Theorem A1: First, note that

n

(
sj1j1·(−j) sj1j2·(−j)

sj2j1·(−j) sj2j2·(−j)

)
∼ W2(m,Σj1j2·(−j)),

where W2(m,Σj1j2·(−j)) denotes the two-dimensional Wishart distribution

with m = n − (p − 2) degrees of freedom and covariance matrix Σj1j2·(−j)

defined in (2.1). We can express Qj1j2·(−j) as

Qj1j2·(−j) =
w2

j1j2·(−j)

wj1j1·(−j)wj2j2·(−j) − w2
j1j2·(−j)

, (A.4)

where wj1j2·(−j) = nsj1j2·(−j)

{
σj1j1·(−j) · σj2j2·(−j)

}−1/2
. We simply write W

to indicate the two-dimensional random matrix Wj1j2·(−j), which is defined

as follows:

Wj1j2·(−j) =

(
wj1j1·(−j) wj1j2·(−j)

wj2j1·(−j) wj2j2·(−j)

)
.

Then

W ∼ W2

(
m,

(
1 ρj1j2·(−j)

ρj1j2·(−j) 1

))
.

From the definition of the Wishart distribution, we can assert W = U′U,

where

U = (u1 u2) ∼ Nm×2

(
O, Im ⊗

(
1 ρj1j2·(−j)

ρj1j2·(−j) 1

))
,

in which A⊗B means the Kronecker product of the two matrices A and B

(see, e.g., Muirhead, 2009). Then, we can write Qj1j2·(−j) in (A.4) as follows:

Qj1j2·(−j) =
u′

2
1

u′
1u1

u1u
′
1u2

u′
2

(
Im − 1

u′
1u1

u1u′
1

)
u2

.

The conditional distribution of u2 given u1 is

u2|u1 ∼ Nm(ρj1j2·(−j)u1, (1− ρ2j1j2·(−j))Im).

Using this conditional distribution, we can claim that

u′
2

(
Im − 1

u′
1u1

u1u
′
1

)
u2 ∼ (1− ρ2j1j2·(−j))χ

2
m−1,
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and this is independent to u1. In general, the numerator and the denominator

are conditionally independent. The conditional distribution of the numerator

u′
2

1
u′
1u1

u1u
′
1u2 given u1 is a noncentral chi-squared distribution such that the

number of degrees of freedom is 1 and the noncentral parameter is τ 2, where

τ 2 = ρ2j1j2·(−j)

{
1− ρ2j1j2·(−j)

}−1
u′

1u1.

These imply Theorem A1.

Next, we show the lower bound of the probability that Ĵd = J∗. It holds

that

Pr(Ĵd = J∗) = Pr

 ⋂
(j1,j2)∈J∗

“Tj1j2,d > 0”

 ∩

 ⋂
(j1,j2)/∈J∗

“Tj1j2,d ≤ 0”


= 1− Pr

 ⋃
(j1,j2)∈J∗

“Tj1j2,d ≤ 0”

 ∪

 ⋃
(j1,j2)/∈J∗

“Tj1j2,d > 0”


≥ 1−

∑
(j1,j2)∈J∗

Pr(Tj1,j2,d ≤ 0)−
∑

(j1,j2)/∈J∗

Pr(Tj1,j2,d > 0).

Thus, Pr(Ĵd = J∗) converges to 1, i.e. variable selection method Ĵd has

consistency if the following [F1] and [F2] hold.

[F1] : P1 ≡
∑

(j1,j2)∈J∗

Pr(Tj1j2,d ≤ 0) → 0.

[F2] : P2 ≡
∑

(j1,j2)/∈J∗

Pr(Tj1j2,d > 0) → 0.

This approach has been used in Fujikoshi and Sakurai (2019), Oda and

Yanagihara (2021), and Fujikoshi (2022), as well as other studies.

A2. Proof of Theorem 2.1

This subsection treats the proof of Theorem 2.1. In Section A1, we mentioned

that Theorem 2.1 is proved by showing [F1] and [F2]; thus we deduce them

in Section A2.1-A2.2.
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A2.1. Proof of [F2]

Firstly, we give a bound of Pr(Tj1j2,d > 0). When (j1, j2) ̸∈ J∗, from Theorem

A1 we can write Tj1j2,d = n log
(
1 + χ2

1/χ
2
m−1

)
− d, where χ2

1 denotes chi-

square variate with 1 degree of freedom which is independent to χ2
m−1, and

therefore we have

Pr(Tj1j2,d > 0) = Pr

(
n log

(
1 +

χ2
1

χ2
m−1

)
− d > 0

)
.

It is observed that

n log

(
1 +

χ2
1

χ2
m−1

)
− d > 0 ⇐⇒ χ2

1

χ2
m−1

> ed/n − 1.

Then we can deduce that

Pr(Tj1j2,d > 0) = Pr

(
χ2
1

χ2
m−1

> ed/n − 1

)
≤ Pr

(
χ2
1

χ2
m−1

>
d

n

)
. (A.5)

Define

an,p =
1

4

m− 1

n

log n

log p
. (A.6)

We find that

an,p > 1 ⇐⇒ n > p4n/(m−1) = p4n/(n−p+1) ⇐= (n, p) ∈ I1. (A.7)

Suppose that En,p = {χ2
m−1 ≥ (m− 1)/an,p} for (n, p) ∈ I1. Then, it follows

that

Pr

(
χ2
1

χ2
m−1

>
d

n

)
= Pr

([{
χ2
1

χ2
m−1

>
d

n

}
∩ En,p

]
∪
[{

χ2
1

χ2
m−1

>
d

n

}
∩ Ec

n,p

])
= Pr

({
χ2
1

χ2
m−1

>
d

n

}
∩ En,p

)
+ Pr

({
χ2
1

χ2
m−1

>
d

n

}
∩ Ec

n,p

)
≤ Pr

(
χ2
1 >

m− 1

n

d

an,p

)
+ Pr

(
χ2
m−1 <

m− 1

an,p

)
,

and so

Pr(Tj1j2,d > 0) ≤ Pr

(
χ2
1 >

m− 1

n

d

an,p

)
+ Pr

(
χ2
m−1 <

m− 1

an,p

)
. (A.8)
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By showing that the right-hand side of inequality (A.8) is o(p−2), we claim

that Pr(Tj1j2,d > 0) = o(p−2). First, we consider the order of the first term

in right-hand side of the inequality (A.8). Let Z0 be the standard normal

variate. Then we have

p2Pr

(
χ2
1 >

m− 1

n

d

an,p

)
= p2Pr

(
|Z0| >

√
m− 1

n

d

an,p

)

≤ p2
√

2

π

{
m− 1

n

d

an,p

}−1/2

exp

(
−1

2

m− 1

n

d

an,p

)
=

√
2

π

{
m− 1

n

d

an,p

}−1/2

· exp
{
−1

2

m− 1

n

d

an,p

(
1− 4

n

m− 1

an,p
d

log p

)}
(A.9)

=

√
2

π
(4 log p)−1/2 ,

where the last equality follows from the setting of d = log n and the definition

of an,p given in (A.6). This implies that

Pr

(
χ2
1 >

m− 1

n

d

an,p

)
= o(p−2). (A.10)

Next, we consider the order of the second term in right-hand side of the

inequality (A.8). It can be expressed that

Pr

(
χ2
m−1 <

m− 1

an,p

)
= Pr

(
χ2
m−1 − (m− 1) < −

(
1− a−1

n,p

)
(m− 1)

)
= Pr

(
−χ2

m−1 − {−(m− 1)} >
(
1− a−1

n,p

)
(m− 1)

)
= Pr

(
m−1∑
i=1

{−Z2
i − (−1)} >

(
1− a−1

n,p

)
(m− 1)

)
,

(A.11)

where Z1, Z2, . . . , Zm−1 are independent standard normal variates. Now, it

holds that

1

an,p
=

log p4n/(n−p+1)

log n
> 0 ((n, p) ∈ I1).
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From (A.7) we find that a−1
n,p < 1 for (n, p) ∈ I1, and thus we claim that

0 < a−1
n,p < 1. It follows from Bernstein’s inequality that the right-hand side

of the equality in (A.11) is dominated in the following way:

Pr

(
m−1∑
i=1

{−Z2
i − (−1)} >

(
1− a−1

n,p

)
(m− 1)

)

≤ exp

(
−

{(1− a−1
n,p)(m− 1)}2/W

2{1 + (1− a−1
n,p)(m− 1)B/W}

)
, (A.12)

where B and W are positive constants satisfying
∑m−1

i=1 E[| − Z2
i + 1|2] ≤ W

and

E(| − Z2
i + 1|k) ≤ 1

2
E(| − Z2

i + 1|2)Bk−2k! (k ∈ {2, 3, . . .}).

Such constants can be taken as W = 2(m − 1) =
∑m−1

i=1 E[(Z2
i − 1)2] and

B = 12. Here, the latter case is shown in the following way: For Z ∼ N(0, 1)

and k ≥ 3,

E(|Z2 − 1|k) ≤ E(|Z2 + 1|k) = 2kE

[∣∣∣∣Z2

2
+

1

2

∣∣∣∣k
]

≤ 2kE

[
|Z2|k

2
+

1

2

]
= 2k−1{E(Z2k) + 1} = 2k−1

{
k−1∏
r=0

(1 + 2r) + 1

}

= 2k−1

{∏k−1
r=0(1 + 2r)

2k−1k!
+

1

2k−1k!

}
2k−1k!

≤
{
3 · 5
4 · 6

+
1

4 · 6

}
4k−1k! =

8

3
· 4k−2k! < 3 · 4k−2k!

≤ 3k−24k−2k! =
1

2
E[|Z2 − 1|2]12k−2k!,

where the second inequality follows from Jensen’s inequality. From the in-
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equality given in (A.12) we obtain

p2Pr

(
χ2
m−1 <

m− 1

an,p

)
≤ p2exp

(
−

{(1− a−1
n,p)(m− 1)}2/W

2{1 + (1− a−1
n,p)(m− 1)B/W}

)
= exp

(
−m− 1

2

{
(1− a−1

n,p)
2

W/(m− 1) + (1− a−1
n,p)B

− 4
log p

m− 1

})
. (A.13)

Under A5, a−1
n,p → a0 ∈ [0, 1); thus the right-hand side of the equality in

(A.13) converges to 0. This implies that

Pr

(
χ2
m−1 <

m− 1

an,p

)
= o(p−2). (A.14)

It follows that

P2 =
∑

(j1,j2)/∈J∗

Pr(Tj1,j2,d > 0)

≤ p2Pr

(
χ2
1

χ2
m−1

> ed/n − 1

)
≤ p2{o(p−2) + o(p−2)} = o(1),

where the first inequality holds from (A.5) and the second inequality holds

from (A.13), (A.10) and (A.14); thus P2 → 0.

A2.2. Proof of [F1]

Firstly, we give a bound of Pr(Tj1j2,d ≤ 0). Let

h = h(χ2
1, χ

2
m−1, χ

2
m) =

χ2
1

(
ρ2
j1j2·(−j)

1−ρ2
j1j2·(−j)

χ2
m

)
χ2
m−1

.
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When (j1, j2) ∈ J∗, from Theorem A1 we have

Pr(Tj1,j2,d ≤ 0) = Pr (n log (1 + h)− d ≤ 0)

= Pr
(
(1 + h)) e−d/n ≤ 1

)
= Pr

(
(1− ρ2j1j2·(−j)) (1 + h) e−d/n − 1 ≤ −ρ2j1j2·(−j)

)
≤ Pr

(∣∣(1− ρ2j1j2·(−j)) (1 + h) e−d/n − 1
∣∣ ≥ ρ2j1j2·(−j)

)
≤ 1

(ρ2j1j2·(−j))
5
E
[∣∣(1− ρ2j1j2·(−j)) (1 + h) e−d/n − 1

∣∣5]
≤ 1

(ρ2j1j2·(−j))
5

(
E
[{

(1− ρ2j1j2·(−j)) (1 + h) e−d/n − 1
}6])5/6

,

(A.15)

where the second inequality follows from the result that Pr(|X| ≥ ε) ≤
ε−5E(|X|5) for random variable X and ε > 0, and the last inequality holds

from Hölder’s inequality. It is noted that the moment in the right-hand side of

inequality (A.15) exists from the assumption that m−1−12 = n−p−11 > 0.

It follows that

E
[{

(1− ρ2j1j2·(−j)) (1 + h) e−d/n − 1
}6]

= E
([{

(1− ρ2j1j2·(−j)) (1 + h)− 1
}
e−d/n + (e−d/n − 1)

]6)
≤ 25

(
e−6d/nE

[{
(1− ρ2j1j2·(−j)) (1 + h)− 1

}6]
+ (e−d/n − 1)6

)
,

where the inequality follows from Jensen’s inequality observed as E[(X/2 +

Y/2)6] ≤ (1/2)E(X6) + (1/2)E(Y 6) for random variables X and Y . This

implies that

Pr(Tj1,j2,d ≤ 0)

≤ 25

(ρ2j1j2·(−j))
5

(
e−6d/nE

[{
(1− ρ2j1j2·(−j)) (1 + h)− 1

}6]
+ (e−d/n − 1)6

)5/6
.

(A.16)

It is noted that

e−d/n − 1 = −e−θd/n d

n
, 0 < ∃θ < d/n. (A.17)
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Thus we obtain

p12/5|e−d/n − 1|6 < p12/5
(
d

n

)6

=
(p
n

)12/5(5

3

log n3/5

n3/5

)6

→ 0. (A.18)

To evaluate the order of the moment in (A.16) we propose a lemma, of which

the proof is simple but tedious so we omit.

Lemma A1. Suppose that χ2
1(·), χ2

m−1 and τ 2 are the same definition as in

(A.3). Then,

E
[
{(1− ρ2j1j2·(−j))(1 + h)− 1}6

]
= E

[{
(1− ρ2j1j2·(−j))

(
1 +

χ2
1 (τ

2)

χ2
m−1

)
− 1

}6
]

= O(m−3).

Applying the result in (A.18) and Lemma A1 to (A.16), we obtain

P1 =
∑

(j1,j2)∈J∗

Pr(Tj1,j2,d ≤ 0)

≤ 25

min(j1,j2)∈J∗(ρ
2
j1j2·(−j))

5
p2
[
O(m−3) + o(p−12/5)

]5/6
,

which converges to 0 under A1 and A2.

A3. Proof of Theorem 2.2

In this subsection, we only sketch the outline of the proof of Theorem 2.2

since the proof uses the same descriptions as the one of Theorem 2.1. Set

the triangular array an,p as

an,p =
log n

log p
> 1 ((n, p) ∈ I2).

We show [F1] and [F2] in Section A3.1-A3.2.

A3.1. Proof of [F2]

It is found that the descriptions from the beginning of Section A2.1 to (A.9)

hold. The right-hand side of the equality in (A.9) is dominated by√
2

π

(
4
n− p+ 1

n− p
log p

)−1/2

exp

(
−2

log p

n− p

)
,
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which converges to 0 under A2. This implies that

Pr

(
χ2
1 >

m− 1

n

d

an,p

)
= o(p−2).

On the other hand, by Bernstein’s inequality, we have

p2Pr

(
χ2
m−1 <

m− 1

an,p

)
≤ exp

(
−m− 1

2

{
(1− a−1

n,p)
2

W/(m− 1) + (1− a−1
n,p)B

− 4
log p

m− 1

})
. (A.19)

Note that 0 < a−1
n,p < 1. Under A2, if p/n → 0 and (log p)/ log n → ℓ ∈

[0, 1) then a−1
n,p → ℓ; thus the right-hand side of inequality (A.19) converges

to 0. Now we consider the case that p/n → c ∈ (0, 1). Variate part of

the exponential function in the right-hand side of inequality (A.19) can be

described as

− 1

8

(
log n1/2

n1/2

)−2
m− 1

n

{ (
log p

n

)2
W/(m− 1) + (1− a−1

n,p)B

−33 · 4n
2/3p1/3

m− 1

log p1/3

p1/3

(
log n1/3

n1/3

)2
}
,

which diverges to −∞ as n, p → ∞ while p/n → c ∈ (0, 1); thus we ob-

serve that the right-hand side of inequality (A.19) converges to 0. From

the inequality (A.8) we observe that Pr(Tj1,j2,d > 0) = o(p−2) uniformly in

(j1, j2) /∈ J∗; thus [F2] holds.

A3.2. Proof of [F1]

It is found that the descriptions from the beginning of Section A2.2 to (A.16)

hold. Using the same derivation as (A.17) we observe that (e−4(logn)/(n−p) −
1)6 = o(p−12/5); thus [F1] holds.

B Real Data Application
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The Kaggle housing dataset, which was obtained at “https://www.kaggle.

com/c/house-prices-advanced-regression-techniques”, consists of p = 29 ob-

servations for n = 2274 houses. Here, observations are, for example, “SalePrice”,

“MS.SubClass”, and “Lot.Frontage”. We applied our model selection method

Ĵ4{n/(n−p)} logn to this dataset. Of p(p − 1)/2 = 406 partial correlations, 50

partial correlations were observed to be nonzero. For example of chosen vari-

ables, “Garage.Cars and Garage.Area”, “Year.Built and Garage.Yr.Blt” and

“Bedroom.AbvGr and TotRms.AbvGrd” are the set of top three in order of

absolute value of the partial correlation coefficients. Table 3 is the list of cho-

sen variables by ĵ IB. We also write the absolute value of partial correlation

coefficients (Abs. of PCC) in this table.
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Table 3: List for choosen set of variables by ĵ IB for Kaggle housing data
Variables Abs. of PCC

Garage.Cars Garage.Area 0.68
Year.Built Garage.Yr.Blt 0.56
Bedroom.AbvGr TotRms.AbvGrd 0.56
Overall.Qual SalePrice 0.48
Overall.Cond Year.Remod.Add 0.39
Overall.Cond Year.Built 0.38
MS.SubClass Lot.Frontage 0.36
Lot.Frontage Lot.Area 0.30
Kitchen.AbvGr TotRms.AbvGrd 0.29
Full.Bath Half.Bath 0.28
Garage.Yr.Blt Garage.Area 0.27
MS.SubClass Half.Bath 0.26
Year.Built Enclosed.Porch 0.24
Mas.Vnr.Area SalePrice 0.24
TotRms.AbvGrd SalePrice 0.24
Year.Built TotRms.AbvGrd 0.23
Bsmt.Full.Bath Full.Bath 0.23
MS.SubClass Kitchen.AbvGr 0.23
Bsmt.Full.Bath SalePrice 0.22
Year.Built Year.Remod.Add 0.22
Full.Bath Bedroom.AbvGr 0.22
Half.Bath TotRms.AbvGrd 0.21
Year.Remod.Add Garage.Yr.Blt 0.21
MS.SubClass Full.Bath 0.18
Bsmt.Full.Bath Bsmt.Half.Bath 0.17
Year.Remod.Add Full.Bath 0.17
Mo.Sold Yr.Sold 0.17
Year.Built Half.Bath 0.17
Overall.Qual Year.Built 0.17
MS.SubClass SalePrice 0.16
Misc.Val SalePrice 0.15
Year.Remod.Add Bedroom.AbvGr 0.15
Full.Bath TotRms.AbvGrd 0.15
Year.Built Garage.Area 0.15
Bsmt.Full.Bath Half.Bath 0.14
Lot.Area SalePrice 0.14
Year.Built Bsmt.Full.Bath 0.14
Lot.Frontage Garage.Area 0.14
Garage.Area SalePrice 0.14
Full.Bath SalePrice 0.14
Lot.Frontage Pool.Area 0.13
Half.Bath Bedroom.AbvGr 0.13
Half.Bath Kitchen.AbvGr 0.13
MS.SubClass Overall.Qual 0.13
Fireplaces SalePrice 0.13
MS.SubClass Bsmt.Full.Bath 0.13
Overall.Cond Bedroom.AbvGr 0.12
Fireplaces Screen.Porch 0.12
Overall.Cond TotRms.AbvGrd 0.12
TotRms.AbvGrd Misc.Val 0.12
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