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Abstract

In this paper, we explore variable selection methods in the context

of generalized linear models and Cox proportional hazards models. In

large-dimensional (LD) setting where the number of explanatory vari-

ables is large, we propose the simple knock-one-out (KOO) method

based on Wald statistic, and show that the limiting probability of se-

lecting the true model is equal to 1. Additionally, we examine the

application of the Bootstrap method to estimate the selection proba-

bilities. Numerical experiments and applications to real datasets are

presented to demonstrate the effectiveness of the proposed approach.
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1. Introduction

In this paper, we address the problem of variable selection in generalized

linear models and Cox proportional hazards models. Traditional methods

such as AIC (Akaike Information Criterion) and BIC (Bayesian Information

Criterion) are commonly used for variable selection. Previous studies by

Fujikoshi et al. (2014) and Yanagihara et al. (2015) have demonstrated

the consistency of AIC and BIC under certain conditions in the context

of multivariate linear regression models. Here, “consistency” refers to the

property that the selection criterion identifies the true model with probability

1 in an asymptotic framework.

However, variable selection using criteria like AIC and BIC becomes

computationally intensive as the number of explanatory variables increases.

Specifically, with k explanatory variables including an intercept, there are

2k−1 candidate models, making exhaustive calculation challenging. One so-

lution to this problem is the Knock-One-Out (KOO) method, introduced by

Bai et al. (2024). This method builds on the work of Nishii et al. (1988) and

Zhao et al. (1986), who applied BIC in multivariate discriminant analysis

and canonical correlation analysis within a large-sample asymptotic frame-

work. Recent advancements by Bai et al. (2024) have extended these results

to multivariate regression models under non-normal conditions.

In this paper, we propose a consistent variable selection method using

the KOO approach, named the KOO-Wald Method. This method utilizes

Wald-type statistics based on the full model with all explanatory variables

for variable selection. Unlike traditional KOO-based methods, which require

deriving a consistency threshold for each selection criterion, the proposed

method overcomes this challenge by providing a unified approach to variable

selection that does not require recalculating the threshold. Moreover, the

method can be applied to generalized linear models and Cox proportional

hazards models, which have not been previously addressed. However, for the
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proposed method to be consistent, certain conditions such as the asymptotic

normality of the maximum likelihood estimator must be satisfied.

The advantages and disadvantages of the proposed KOO-Wald Method

are summarized as follows:

� Advantage 1: No need to derive a new threshold d.

� Advantage 2: The method is uniformly applicable across various mod-

els.

� Advantage 3: It can be applied to a broader range of analyses, including

generalized linear models and Cox proportional hazards models.

� Disadvantage 1: The criterion is fundamentally based on the maximum

likelihood estimator, requiring that the estimator satisfies asymptotic

normality.

Additionally, we propose a method for estimating selection probabilities using

the Bootstrap method. We present numerical experiments and applications

to real data to illustrate these concepts. Estimating selection probabilities

allows us to assess the importance of each variable, analogous to how weather

forecasts provide not just predictions of rain but also the probability of pre-

cipitation, helping people decide whether to carry an umbrella.

Furthermore, we discuss the application of the proposed method to more

complex model selection problems, along with solutions using the Bootstrap

method.

The structure of this paper is as follows: In Section 2, we prepare the

notations and symbols used in this paper. In Section 3, we propose the

KOO-Wald Method and present the results of numerical experiments. In

Section 4, we introduce a method for estimating selection probabilities using

the Bootstrap method, along with corresponding numerical results. In Sec-

tion 5, we apply the proposed methods to real data and present the results.

In Section 6, we discuss the application of our method to complex model
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selection, supported by numerical experiments and real data applications. In

Section 7, we conclude with a summary and future research directions.

2. Notations and Preliminaries

In this paper, we consider the problem of variable selection in general-

ized linear models (GLMs) and Cox proportional hazards models. For both

models, let yi denote the response variable, xi : k× 1 represent the vector of

all explanatory variables, and β : k × 1 represent the unknown parameters.

Note that the generalized linear model includes an intercept term, whereas

the Cox proportional hazards model does not. Specifically, we have:

Generalized Linear Model: x′
iβ = β1 + β2xi2 + . . .+ βkxik

Cox Proportional Hazards Model: x′
iβ = β1xi1 + β2xi2 + . . .+ βkxik

For the generalized linear model, the full model MF using all explanatory

variables is expressed as:

[MF ] yi ∼ G : E[yi|xi] = g−1(x′
iβ), i = 1, . . . , n

where G denotes an exponential family distribution, and g is the link func-

tion.

For the Cox proportional hazards model, the full model MF using all

explanatory variables is expressed as:

[MF ] yi ∼ G : F (t) = 1− S(t) = 1−
∫ t

0

h(u) du,

h(t) = h0(t) exp(x
′
iβ), i = 1, . . . , n

where F (t) is the cumulative distribution function, S(t) is the survival func-

tion, h(t) is the hazard function, and h0(t) is the baseline hazard function.

Let j be a subset of the index set ω = {1, 2, . . . , k}, and let Mj denote the

model using the explanatory variables corresponding to j. The true model,
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which generates the data, is denoted by M∗, and the corresponding set of

explanatory variables is indexed by j∗. The collection of all subsets j is

denoted by F:

F = {{1}, . . . , {k}, {1, 2}, . . . , {1, . . . , k}}

In this paper, we assume that the true model M∗ is included among the

candidate models, i.e., j∗ ∈ F. Under this assumption, we consider a variable

selection method such that the selected model ĵ satisfies:

lim
n→∞

P (ĵ = j∗) = 1.

3. Main result

The variable selection method proposed in this paper is as follows. Con-

sider the Wald-type statistic Ti for the parameter βi in the full model MF :

Ti =
β̂i√

V̂ar(β̂i)

, i = 1, . . . , k,

where β̂i is the maximum likelihood estimator (MLE) of βi, and V̂ar(β̂i) is

the estimator of Var(β̂i).

The decision rule is given by:

Ti > n1/4 ⇒ βi > 0, −n1/4 ≤ Ti ≤ n1/4 ⇒ βi = 0, Ti < −n1/4 ⇒ βi < 0,

where n denotes the sample size. This decision rule allows us to determine

not only the inclusion of a variable but also its sign. The selected model ĵ is

thus given by:

ĵ = {j ∈ ω | |Tj| > n1/4}.

5



This method is consistent under the following assumptions A0 to A5:

A0 Model Assumption: The true model is included within the full model.

A1 Sample Size and Parameter Assumptions:

n → ∞, k = O(na), 0 ≤ a <
1

2
.

A2 Consistency of the Estimator (1): Under A1,

β̂i = βi +Op(n
−1/2).

A3 Consistency of the Estimator (2): Under A1, for any ε > 0,

P (|β̂i − βi| ≥ ε) = O(n−1/2).

A4 Variance of the Estimator: Under A1,

Var(β̂i) = O(n−1).

A5 Wald-type Probability Evaluation: Under A1,

P

 β̂i√
V̂ar(β̂i)

≥ x

 = P

 β̂i√
Var(β̂i)

≥ x

+O(n−1/2).

Here, k is the number of variables considered in the selection process. The

assumptions A2 to A5 are properties that the MLE satisfies under large

sample sizes. For more details on the properties of the MLE in generalized

linear models and other contexts under large samples, see Dobson et al.

(2008).

Under these assumptions, the following theorem holds:

Theorem 3.1. Under assumptions A0 to A5, the selected model ĵ = {j ∈
ω | |Tj| > n1/4} satisfies:

lim
n→∞

P (ĵ = j∗) = 1.

3.1. Numerical Experiments: Verification of Consis-
tency
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In this section, we verify the consistency of the proposed variable selec-

tion method through numerical experiments using regression models, logistic

regression models, Poisson regression models, and Cox proportional hazards

models. The models are specified as follows. Let y : n× 1 denote the sample

of the response variable, where the i-th observation is yi. Let β1 : k1 × 1

represent the non-zero coefficients in the true model, and let the full model’s

coefficients be β = (β′
1,0

′)′ : k × 1. Let X : n × k denote the matrix of ex-

planatory variables for the full model, with xi representing the explanatory

variables corresponding to yi. The models can be expressed as follows:

Regression Model: yi ∼ N(µi, σ
2),

µi = x′
iβ, i = 1, . . . , n

Logistic Regression Model: yi ∼ Bern(pi),

pi =
1

1 + exp(−x′
iβ)

, i = 1, . . . , n

Poisson Regression Model: yi ∼ Po(λi),

λi = exp(x′
iβ), i = 1, . . . , n

Cox Proportional Hazards Model: yi ∼ F (t) = 1− S(t) = 1−
∫ t

0

h(u) du,

h(t) = h0(t) exp(x
′
iβ), i = 1, . . . , n

Here, Bern(p) denotes the Bernoulli distribution with success probability p,

and Po(λ) denotes the Poisson distribution with mean λ. In the Cox propor-

tional hazards model, F (t) represents the cumulative distribution function,

S(t) the survival function, h(t) the hazard function, and h0(t) the baseline

hazard function.

The proposed variable selection method is based on the Wald statistic:

Ti =
β̂i√

V̂ar(β̂i)

, i = 1, . . . , k,

and the decision rule is as follows:

Ti > n1/4 ⇒ βi > 0, −n1/4 < Ti < n1/4 ⇒ βi = 0, Ti < −n1/4 ⇒ βi < 0,
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where n denotes the sample size. Under these conditions, we confirm the

consistency of the method by demonstrating that the probability of selecting

the true model approaches 1 as the sample size increases.

As a comparison, we also examine the consistency of variable selection

methods using the KOO method, stepwise selection (both forward and back-

ward with AIC and BIC), and lasso regression. The KOO method’s decision

rules using AIC and BIC are as follows:

KOO method: AIC−j − AIC > 0 ⇒ βj ̸= 0, BIC−j − BIC > 0 ⇒ βj ̸= 0.

For stepwise selection, we conducted numerical experiments using the full

model as the starting point, iteratively removing one explanatory variable

and selecting the model that minimizes the criterion until no further reduc-

tion in AIC or BIC is possible.

Lasso regression, which performs both estimation and variable selection,

was also evaluated. To determine the penalty parameter λ, 10-fold cross-

validation was used. We examined the regression coefficients for two values

of λ: λmin, where the error was minimized, and λ1se, where λ was within

one standard error of the minimum error. The lasso computations were

performed using the R package ‘glmnet‘, which provides lasso regression for

logistic, Poisson, and Cox proportional hazards models. For details on the

glmnet method, see Friedman et al. (2010).

The numerical experiments were conducted under the following condi-

tions:

� Number of simulations: 104

� Values of β: The values were evenly divided between 1 and 2 across k1

components, and those values alternated in sign, i.e., βj = (−1)j−1
(
1 + j−1

k1−1

)
� Values of explanatory variables: The values of X : n×k were generated

from a uniform distribution on (−1, 1)

� For the Cox proportional hazards model, random numbers were gener-

ated from a Weibull distribution W (m, η). The shape parameter was
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set to m = 3, and η = exp(−1/mx′β). It is known that the hazard

function in this case is expressed as:

h(t) = m

(
t

η

)m

= m

(
t

x′β

)m

.

The results for each model are presented below.

The following are the results for the regression model.

Regression Wald KOO Step Lasso
n k k1 β > 0 β < 0 β = 0 all AIC BIC AIC BIC λmin λ1se

100 10 0 0.00 0.00 0.98 0.98 0.15 0.66 0.00 0.00 0.00 0.00
10 5 1.00 1.00 0.99 0.99 0.39 0.81 0.39 0.82 0.07 0.66
10 10 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

500 10 0 0.00 0.00 1.00 1.00 0.17 0.87 0.00 0.00 0.00 0.00
10 5 1.00 1.00 1.00 1.00 0.43 0.93 0.43 0.93 0.07 0.93
10 10 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

200 50 0 0.00 0.00 0.99 0.99 0.00 0.13 0.00 0.00 0.00 0.00
50 25 1.00 1.00 0.99 0.99 0.00 0.33 0.00 0.42 0.00 0.00
50 50 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 50 0 0.00 0.00 1.00 1.00 0.00 0.60 0.00 0.00 0.00 0.00
50 25 1.00 1.00 1.00 1.00 0.01 0.76 0.01 0.78 0.00 0.04
50 50 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

The following are the results for the logistic regression model.

logistic Wald KOO Step Lasso
n k k1 β > 0 β < 0 β = 0 all AIC BIC AIC BIC λmin λ1se

100 10 0 0.00 0.00 0.99 0.99 0.16 0.67 0.00 0.00 0.01 0.01
10 5 0.16 0.11 1.00 0.02 0.30 0.41 0.31 0.46 0.06 0.33
10 10 0.00 0.00 0.00 0.00 0.42 0.09 0.43 0.10 0.86 0.42

500 10 0 0.00 0.00 1.00 1.00 0.17 0.88 0.00 0.00 0.00 0.00
10 5 0.99 0.87 1.00 0.86 0.42 0.93 0.42 0.93 0.03 0.79
10 10 0.57 0.34 0.00 0.20 1.00 0.99 1.00 0.99 1.00 1.00

200 50 0 0.00 0.00 0.97 0.97 0.00 0.12 0.00 0.00 0.00 0.00
50 25 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1000 50 0 0.00 0.00 1.00 1.00 0.00 0.60 0.00 0.02 0.00 0.00
50 25 0.10 0.05 1.00 0.01 0.01 0.71 0.01 0.76 0.00 0.00
50 50 0.00 0.00 0.00 0.00 0.99 0.82 0.99 0.82 1.00 1.00
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In the case of the logistic regression model, the convergence was slow, so

additional numerical experiments were conducted with an increased sample

size n.

logistic Wald KOO Step Lasso
n k k1 β > 0 β < 0 β = 0 all AIC BIC AIC BIC λmin λ1se

1000 10 0 0.00 0.00 1.00 1.00 0.18 0.91 0.00 0.00 0.00 0.00
10 5 1.00 1.00 1.00 1.00 0.41 0.96 0.42 0.96 0.03 0.87
10 10 0.95 0.84 0.00 0.81 1.00 1.00 1.00 1.00 1.00 1.00

5000 50 0 0.00 0.00 1.00 1.00 0.00 0.83 0.00 0.01 0.00 0.00
50 25 1.00 1.00 1.00 1.00 0.01 0.91 0.01 0.91 0.00 0.00
50 50 0.93 0.88 0.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00

The following are the results for the poisson regression model.

poisson Wald KOO Step Lasso
n k k1 β > 0 β < 0 β = 0 all AIC BIC AIC BIC λmin λ1se

100 10 0 0.00 0.00 0.98 0.98 0.18 0.71 0.00 0.00 0.00 0.00
10 5 1.00 1.00 0.99 0.99 0.45 0.86 0.43 0.85 0.02 0.15
10 10 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99

500 10 0 0.00 0.00 1.00 1.00 0.19 0.88 0.00 0.00 0.00 0.00
10 5 1.00 1.00 1.00 1.00 0.43 0.94 0.42 0.94 0.02 0.56
10 10 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

200 50 0 0.00 0.00 0.98 0.98 0.00 0.28 0.00 0.00 0.00 0.00
50 25 1.00 1.00 1.00 1.00 0.05 0.65 0.02 0.65 0.00 0.00
50 50 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 0.01 0.00

1000 50 0 0.00 0.00 1.00 1.00 0.00 0.64 0.00 0.00 0.00 0.00
50 25 1.00 1.00 1.00 1.00 0.03 0.82 0.02 0.82 0.00 0.00
50 50 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 0.03 0.03

The following are the results for the Cox proportional hazards model.
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Cox Wald KOO Step Lasso
n k k1 β > 0 β < 0 β = 0 all AIC BIC AIC BIC λmin λ1se

100 10 0 0.00 0.00 0.97 0.97 0.14 0.63 0.15 0.70 0.46 0.60
10 5 0.96 1.00 0.99 0.95 0.38 0.81 0.38 0.82 0.02 0.48
10 10 0.96 0.99 0.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00

500 10 0 0.00 0.00 1.00 1.00 0.17 0.87 0.18 0.88 0.51 0.69
10 5 1.00 1.00 1.00 1.00 0.41 0.93 0.41 0.93 0.01 0.69
10 10 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

200 50 0 0.00 0.00 0.90 0.90 0.00 0.07 0.00 0.29 0.42 0.56
50 25 0.99 1.00 0.96 0.96 0.00 0.31 0.00 0.41 0.00 0.00
50 50 0.99 0.99 0.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00

1000 50 0 0.00 0.00 1.00 1.00 0.00 0.56 0.00 0.64 0.47 0.65
50 25 1.00 1.00 1.00 1.00 0.01 0.76 0.01 0.78 0.00 0.00
50 50 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

In the table, n represents the sample size, k denotes the total number of

explanatory variables, and k1 is the number of parameters for which βi ̸= 0.

The column “Wald β > 0” indicates the probability that all positive co-

efficients were correctly identified as positive, “Wald β < 0” indicates the

probability that all negative coefficients were correctly identified as negative,

and “Wald β = 0” shows the probability that all zero coefficients were cor-

rectly identified as zero. The column “Wald all” represents the probability

of selecting the true model.

The columns labeled “KOO” represent the probability of selecting the

true model using AIC and BIC in the KOO method, while “Step” refers to

the probability of selecting the true model using AIC and BIC in stepwise

selection. The “Lasso” column shows the probability of selecting the true

model when using lasso regression with hyperparameters λmin and λ1se. Here,

λmin is the value of λ that minimizes the error in 10-fold cross-validation, and

λ1se is the largest λ within one standard error of the minimum error. Boldface

in the table indicates a probability of 1 for selecting the true model.

These results demonstrate that consistency is achieved as the sample

size increases for each model. However, in the case of the logistic regression

model, convergence is slower compared to the other models, requiring a larger

sample size for consistent results.
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4. Estimation of Selection Probabilities

In this section, we propose a method for estimating the selection prob-

abilities of variables using the variable selection method introduced in this

paper. The probability that a coefficient βi is determined to be non-zero by

the proposed method can be expressed as follows:

pi = P
(
|Ti| > n1/4

)
, i = 1, . . . , k.

This probability pi can be estimated using the Bootstrap method as follows.

Let B denote the number of bootstrap samples, and let T#
ij represent the

value of Ti computed from the j-th bootstrap sample. Then, the estimator

p̂i for pi is given by:

p̂i =
1

B

B∑
j=1

I(|T#
ij | > n1/4),

where the indicator function I(|T#
ij | > n1/4) is defined as:

I(|T#
ij | > n1/4) =

{
1 if |T#

ij | > n1/4,

0 if |T#
ij | ≤ n1/4.

In other words, p̂i corresponds to the proportion of bootstrap samples in

which the coefficient βi is judged to be non-zero.

Next, we introduce the following assumptions:

B1 Asymptotic Normality: Under A1,

β̂i − βi√
V̂ar(β̂i)

d→ N(0, 1).

B2 Bootstrap Distribution: Under A1,

P

 β̂i − βi√
V̂ar(β̂i)

< x

 = P

 β̂#
i − β̂i√
V̂ar(β̂i)

< x

∣∣∣∣∣X
+O(n−1).

Assumption B1 is a property satisfied by the maximum likelihood estimator

under large samples. Assumption B2 is commonly assumed when applying

12



the Bootstrap method in large samples. For more details on the Bootstrap

method in large samples, see Hall (1992).

Under these conditions, the following theorem holds:

Theorem 4.1. Under assumptions A0–A5 and B1–B2, the median m of p̂i

approximates the selection probability pi. Specifically, it satisfies:

P (p̂i ≤ pi) = P (p̂i ≥ pi) =
1

2
+ o(1),

where the order term o(1) is related to n and B.

4.1. Numerical Experiment: Estimation of Selection
Probabilities

In this section, we conduct numerical experiments to estimate selection prob-

abilities under the regression model, logistic regression model, Poisson re-

gression model, and Cox proportional hazards model, following the same

approach as in the verification of consistency. The numerical experiments

were conducted under the following conditions:

� Number of simulations: 104

� Values of β: To observe the behavior of selection probabilities, small

values were chosen, specifically βj = (−1)j−1 1
4

(
1 + j−1

k1−1

)
� Values of explanatory variables: The matrix X : n × k was generated

from a uniform distribution on (−1, 1).

� Cox proportional hazards model: The same setup as in the consistency

verification.

� Number of bootstrap samples: 103

The results obtained under these settings are presented below.

The following are the results for the regression model.
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regression:k = 10, k1 = 5
n = 200, k = 10, k1 = 5 n = 1000, k = 10, k1 = 5

βi pi mean median sd pi mean median sd

β1 0.25 0.39 0.42 0.39 0.29 0.99 0.94 0.99 0.11
β2 -0.31 0.11 0.19 0.10 0.22 0.53 0.52 0.53 0.29
β3 0.38 0.22 0.30 0.22 0.26 0.88 0.80 0.89 0.22
β4 -0.44 0.40 0.43 0.40 0.29 0.99 0.95 0.99 0.10
β5 0.50 0.58 0.56 0.58 0.29 1.00 0.99 1.00 0.03
β6 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00
β7 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00
β8 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00
β9 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00
β10 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00

Here, βi represents the value of the coefficient for i = 1 to i = k. When the

coefficient βi is zero, it indicates that the corresponding explanatory variable

is unnecessary. The probability pi represents the proportion of numerical

experiments in which Ti was determined to be non-zero, thus providing an

estimate of the true selection probability. Additionally, “mean” refers to the

average value of p̂i estimated from the bootstrap samples, “median” refers

to the median of p̂i, and “sd” refers to the standard deviation of p̂i.

The average and median of p̂i are approximately as follows:

Mean of p̂i ≈ E[p̂i], Median of p̂i = m ≈ P (p̂i ≤ m) =
1

2
.

These results suggest that the bootstrap estimator p̂i tends to exhibit unbi-

asedness with respect to the median rather than the expectation.
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The results of the numerical experiments conducted with larger values of

k and k1 are as follows.

regression:k = 50, k1 = 25
n = 200 n = 1000

βi pi mean median sd pi mean median sd

β1 0.25 0.25 0.32 0.26 0.26 0.98 0.93 0.98 0.12
β2 -0.26 0.03 0.10 0.04 0.14 0.16 0.25 0.17 0.24
β3 0.27 0.04 0.11 0.05 0.15 0.21 0.29 0.21 0.25
β4 -0.28 0.04 0.12 0.05 0.16 0.28 0.33 0.27 0.27
β5 0.29 0.05 0.13 0.06 0.16 0.33 0.38 0.33 0.28
β6 -0.30 0.06 0.14 0.07 0.17 0.41 0.44 0.41 0.29
β7 0.31 0.07 0.16 0.08 0.19 0.47 0.48 0.47 0.29
β8 -0.32 0.08 0.16 0.09 0.19 0.54 0.53 0.55 0.29
β9 0.33 0.09 0.18 0.10 0.20 0.63 0.59 0.63 0.28
β10 -0.34 0.10 0.19 0.11 0.20 0.69 0.63 0.69 0.28
β11 0.35 0.11 0.21 0.13 0.21 0.75 0.68 0.75 0.26
β12 -0.36 0.12 0.22 0.14 0.22 0.81 0.73 0.81 0.25
β13 0.38 0.14 0.23 0.16 0.23 0.85 0.77 0.85 0.24
β14 -0.39 0.16 0.25 0.18 0.23 0.89 0.81 0.89 0.21
β15 0.40 0.17 0.26 0.19 0.24 0.92 0.84 0.92 0.20
β16 -0.41 0.20 0.28 0.21 0.24 0.94 0.87 0.95 0.18
β17 0.42 0.22 0.30 0.23 0.25 0.96 0.89 0.96 0.16
β18 -0.43 0.24 0.32 0.26 0.26 0.97 0.92 0.98 0.14
β19 0.44 0.26 0.33 0.28 0.26 0.98 0.93 0.98 0.12
β20 -0.45 0.29 0.35 0.29 0.26 0.99 0.95 0.99 0.10
β21 0.46 0.31 0.37 0.32 0.27 0.99 0.96 0.99 0.08
β22 -0.47 0.35 0.39 0.35 0.27 1.00 0.97 1.00 0.07
β23 0.48 0.37 0.41 0.37 0.28 1.00 0.98 1.00 0.06
β24 -0.49 0.39 0.43 0.40 0.28 1.00 0.98 1.00 0.05
β25 0.50 0.42 0.45 0.42 0.28 1.00 0.99 1.00 0.04
β26 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00

...
...

...
...

...
...

...
...

...
...

β50 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00

Here, the results for β27 through β49 are omitted as they were similar to those

for β26 and β50.

15



The following are the results for the logistic regression model.

logistic:k = 10, k1 = 5
n = 200, k = 10, k1 = 5 n = 1000, k = 10, k1 = 5

βi pi mean median sd pi mean median sd

β1 0.25 0.02 0.10 0.04 0.14 0.03 0.11 0.04 0.15
β2 -0.31 0.01 0.05 0.02 0.10 0.00 0.02 0.00 0.06
β3 0.38 0.01 0.07 0.03 0.12 0.01 0.05 0.01 0.10
β4 -0.44 0.02 0.10 0.04 0.14 0.03 0.11 0.04 0.15
β5 0.50 0.03 0.13 0.07 0.16 0.10 0.20 0.12 0.21
β6 0.00 0.00 0.02 0.00 0.03 0.00 0.00 0.00 0.00
β7 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00
β8 0.00 0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.00
β9 0.00 0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.00
β10 0.00 0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.00
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logistic:k = 50, k1 = 25
n = 200 n = 1000

βi pi mean median sd pi mean median sd

β1 0.25 0.02 0.61 0.61 0.20 0.02 0.11 0.04 0.15
β2 -0.26 0.00 0.55 0.54 0.19 0.00 0.01 0.00 0.04
β3 0.27 0.00 0.56 0.55 0.20 0.00 0.02 0.00 0.04
β4 -0.28 0.00 0.55 0.54 0.19 0.00 0.02 0.00 0.05
β5 0.29 0.01 0.56 0.55 0.20 0.00 0.02 0.00 0.05
β6 -0.30 0.01 0.56 0.55 0.19 0.00 0.02 0.00 0.06
β7 0.31 0.01 0.57 0.56 0.20 0.00 0.03 0.00 0.07
β8 -0.32 0.01 0.57 0.56 0.20 0.00 0.03 0.01 0.07
β9 0.33 0.01 0.57 0.57 0.20 0.00 0.04 0.01 0.08
β10 -0.34 0.01 0.58 0.57 0.20 0.00 0.04 0.01 0.08
β11 0.35 0.01 0.58 0.57 0.20 0.00 0.05 0.01 0.09
β12 -0.36 0.01 0.58 0.58 0.20 0.00 0.05 0.01 0.10
β13 0.38 0.01 0.59 0.58 0.20 0.00 0.06 0.02 0.11
β14 -0.39 0.01 0.59 0.58 0.20 0.01 0.07 0.02 0.12
β15 0.40 0.01 0.59 0.59 0.20 0.01 0.07 0.02 0.12
β16 -0.41 0.01 0.60 0.60 0.20 0.01 0.08 0.03 0.13
β17 0.42 0.01 0.60 0.60 0.20 0.01 0.09 0.03 0.13
β18 -0.43 0.02 0.60 0.60 0.20 0.01 0.10 0.04 0.14
β19 0.44 0.01 0.61 0.61 0.20 0.02 0.11 0.05 0.15
β20 -0.45 0.02 0.61 0.62 0.20 0.02 0.12 0.05 0.16
β21 0.46 0.02 0.62 0.62 0.20 0.02 0.13 0.06 0.17
β22 -0.47 0.02 0.63 0.63 0.20 0.03 0.14 0.07 0.17
β23 0.48 0.02 0.62 0.63 0.20 0.04 0.16 0.09 0.18
β24 -0.49 0.03 0.63 0.64 0.20 0.04 0.17 0.09 0.19
β25 0.50 0.03 0.64 0.65 0.20 0.05 0.19 0.11 0.20
β26 0.00 0.00 0.51 0.50 0.18 0.00 0.00 0.00 0.00

...
...

...
...

...
...

...
...

...
...

β50 0.00 0.00 0.52 0.50 0.18 0.00 0.00 0.00 0.00
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The following are the results for the poisson regression model.

poisson:k = 10, k1 = 5
n = 200, k = 10, k1 = 5 n = 1000, k = 10, k1 = 5

βi pi mean median sd pi mean median sd

β1 0.25 0.40 0.36 0.30 0.30 0.99 0.96 1.00 0.10
β2 -0.31 0.20 0.28 0.21 0.25 0.86 0.78 0.87 0.23
β3 0.38 0.40 0.44 0.41 0.28 0.99 0.96 0.99 0.09
β4 -0.44 0.64 0.60 0.63 0.28 1.00 1.00 1.00 0.02
β5 0.50 0.81 0.74 0.82 0.25 1.00 1.00 1.00 0.00
β6 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00
β7 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00
β8 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00
β9 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00
β10 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00

18



poisson:k = 50, k1 = 25
n = 200 n = 1000

βi pi mean median sd pi mean median sd

β1 0.25 0.07 0.05 0.02 0.10 0.95 0.83 0.92 0.21
β2 -0.26 0.09 0.23 0.17 0.20 0.87 0.79 0.87 0.22
β3 0.27 0.10 0.25 0.19 0.21 0.92 0.83 0.91 0.20
β4 -0.28 0.12 0.26 0.20 0.21 0.95 0.87 0.95 0.17
β5 0.29 0.14 0.28 0.23 0.22 0.97 0.91 0.97 0.15
β6 -0.30 0.16 0.30 0.25 0.23 0.98 0.93 0.98 0.12
β7 0.31 0.18 0.32 0.27 0.23 0.99 0.96 0.99 0.09
β8 -0.32 0.21 0.34 0.30 0.24 1.00 0.97 1.00 0.07
β9 0.33 0.24 0.36 0.32 0.25 1.00 0.98 1.00 0.05
β10 -0.34 0.27 0.38 0.35 0.25 1.00 0.99 1.00 0.04
β11 0.35 0.29 0.40 0.36 0.25 1.00 0.99 1.00 0.03
β12 -0.36 0.34 0.43 0.40 0.25 1.00 1.00 1.00 0.02
β13 0.38 0.37 0.45 0.43 0.26 1.00 1.00 1.00 0.02
β14 -0.39 0.40 0.47 0.46 0.26 1.00 1.00 1.00 0.01
β15 0.40 0.44 0.50 0.49 0.26 1.00 1.00 1.00 0.01
β16 -0.41 0.47 0.51 0.52 0.26 1.00 1.00 1.00 0.01
β17 0.42 0.51 0.54 0.55 0.26 1.00 1.00 1.00 0.00
β18 -0.43 0.54 0.56 0.58 0.26 1.00 1.00 1.00 0.00
β19 0.44 0.59 0.59 0.61 0.26 1.00 1.00 1.00 0.00
β20 -0.45 0.61 0.61 0.64 0.25 1.00 1.00 1.00 0.00
β21 0.46 0.64 0.63 0.66 0.25 1.00 1.00 1.00 0.00
β22 -0.47 0.68 0.65 0.70 0.25 1.00 1.00 1.00 0.00
β23 0.48 0.72 0.67 0.73 0.24 1.00 1.00 1.00 0.00
β24 -0.49 0.74 0.69 0.74 0.24 1.00 1.00 1.00 0.00
β25 0.50 0.77 0.71 0.77 0.23 1.00 1.00 1.00 0.00
β26 0.00 0.00 0.03 0.02 0.04 0.00 0.00 0.00 0.00

...
...

...
...

...
...

...
...

...
...

β50 0.00 0.00 0.03 0.02 0.05 0.00 0.00 0.00 0.00
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The following are the results for the Cox proportional hazards model.

Cox:k = 10, k1 = 5
n = 200, k = 10, k1 = 5 n = 1000, k = 10, k1 = 5

βi pi mean median sd pi mean median sd

β1 0.25 0.04 0.14 0.06 0.17 0.13 0.22 0.15 0.23
β2 -0.31 0.10 0.22 0.14 0.22 0.50 0.51 0.52 0.29
β3 0.38 0.21 0.33 0.26 0.26 0.86 0.79 0.87 0.22
β4 -0.44 0.37 0.45 0.42 0.28 0.99 0.94 0.99 0.11
β5 0.50 0.55 0.58 0.61 0.28 1.00 0.99 1.00 0.04
β6 0.00 0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.00
β7 0.00 0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.00
β8 0.00 0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.00
β9 0.00 0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.00
β10 0.00 0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.00
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Cox:k = 50, k1 = 25
n = 200 n = 1000

βi pi mean median sd pi mean median sd

β1 0.25 0.06 0.27 0.21 0.21 0.13 0.25 0.17 0.24
β2 -0.26 0.06 0.28 0.23 0.21 0.17 0.29 0.22 0.25
β3 0.27 0.08 0.30 0.24 0.22 0.22 0.34 0.27 0.27
β4 -0.28 0.08 0.31 0.26 0.22 0.27 0.38 0.34 0.28
β5 0.29 0.09 0.33 0.28 0.23 0.33 0.43 0.41 0.28
β6 -0.30 0.10 0.34 0.29 0.23 0.40 0.48 0.47 0.29
β7 0.31 0.12 0.35 0.31 0.24 0.47 0.53 0.54 0.29
β8 -0.32 0.12 0.36 0.32 0.24 0.53 0.58 0.60 0.28
β9 0.33 0.14 0.38 0.34 0.24 0.60 0.62 0.67 0.28
β10 -0.34 0.16 0.40 0.37 0.24 0.68 0.68 0.74 0.26
β11 0.35 0.17 0.41 0.38 0.24 0.74 0.72 0.79 0.25
β12 -0.36 0.19 0.43 0.41 0.25 0.79 0.76 0.84 0.24
β13 0.38 0.21 0.44 0.42 0.25 0.84 0.79 0.87 0.22
β14 -0.39 0.22 0.46 0.44 0.25 0.88 0.83 0.91 0.20
β15 0.40 0.26 0.48 0.47 0.25 0.91 0.86 0.93 0.18
β16 -0.41 0.26 0.49 0.48 0.25 0.94 0.89 0.95 0.16
β17 0.42 0.29 0.51 0.51 0.25 0.95 0.90 0.97 0.15
β18 -0.43 0.32 0.53 0.53 0.25 0.97 0.93 0.98 0.13
β19 0.44 0.34 0.54 0.55 0.25 0.98 0.94 0.99 0.11
β20 -0.45 0.36 0.56 0.58 0.25 0.99 0.95 0.99 0.09
β21 0.46 0.38 0.57 0.59 0.25 0.99 0.97 1.00 0.08
β22 -0.47 0.41 0.59 0.61 0.25 0.99 0.97 1.00 0.07
β23 0.48 0.43 0.60 0.63 0.25 1.00 0.98 1.00 0.05
β24 -0.49 0.45 0.61 0.64 0.25 1.00 0.99 1.00 0.04
β25 0.50 0.48 0.64 0.67 0.24 1.00 0.99 1.00 0.04
β26 0.00 0.00 0.11 0.07 0.10 0.00 0.00 0.00 0.00

...
...

...
...

...
...

...
...

...
...

β50 0.00 0.00 0.11 0.07 0.10 0.00 0.00 0.00 0.00

From these results, it is evident that as the sample size increases, the

bootstrap-based estimation of selection probabilities asymptotically becomes

a median-unbiased estimator. Among the models, the regression model con-

sistently converged faster than the others. The Poisson regression model

followed, showing relatively fast convergence. In the Cox proportional haz-

ards model, the convergence was comparable to that of the Poisson regression

model when k was small; however, as k increased, the performance was not as
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strong as that of the Poisson regression model. Consistent with the results

for consistency, the logistic regression model exhibited slower convergence

compared to the other models.

5. Application to Real Data

In this section, we describe the results of applying the proposed methods

to real datasets using linear regression, logistic regression, Poisson regression,

and Cox proportional hazards models. For each model, we identified the

selected explanatory variables using the following methods:

� The Wald-type KOO method proposed in this paper

� The KOO method using AIC or BIC

� Stepwise selection using AIC or BIC

� Lasso regression with λmin or λ1se

For the Wald-type KOOmethod, we also estimated the selection probabilities

of the coefficients.

5.1. Linear Regression Model

We applied the linear regression model to the Boston housing dataset, which

is provided by the MASS library in R (Venables and Ripley, 2002). This

dataset contains information on housing prices in Boston with n = 506 ob-

servations. The response variable is the housing price, and the following

explanatory variables were used in the linear regression model:

� crim: Crime rate

� zn: Proportion of residential land zoned for large lots
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� indus: Proportion of non-retail business acres per town

� chas: Charles River dummy variable (1 if tract bounds river; 0 other-

wise)

� nox: Nitric oxides concentration (parts per 10 million)

� rm: Average number of rooms per dwelling

� age: Proportion of owner-occupied units built before 1940

� dis: Weighted distances to five Boston employment centers

� rad: Index of accessibility to radial highways

� tax: Full-value property-tax rate per $10,000

� ptratio: Pupil-teacher ratio by town

� black: Proportion of Black residents

� lstat: Percentage of lower status of the population

The results are as follows.

n = 506 Wald KOO Step Lasso Wald
k = 14 AIC BIC AIC BIC λmin λ1se prob.

Intercept 24.47 36.34 36.34 36.34 36.34 34.36 17.53 0.93
crim -0.11 -0.11 -0.11 -0.11 -0.10 -0.02 0.04
zn 0.05 0.05 0.05 0.05 0.04 0.09

indus 0.00
chas 2.72 2.72 2.72 2.72 2.68 1.90 0.16
nox -17.38 -17.38 -17.38 -17.38 -16.25 -3.38 0.42
rm 4.22 3.80 3.80 3.80 3.80 3.87 4.26 0.99
age 0.00
dis -0.55 -1.49 -1.49 -1.49 -1.49 -1.39 -0.32 1.00
rad 0.30 0.30 0.30 0.30 0.25 0.43
tax -0.01 -0.01 -0.01 -0.01 -0.01 0.03

ptratio -0.97 -0.95 -0.95 -0.95 -0.95 -0.93 -0.79 1.00
black 0.01 0.01 0.01 0.01 0.01 0.01 0.10
lstat -0.67 -0.52 -0.52 -0.52 -0.52 -0.52 -0.52 1.00
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A blank entry indicates that the variable was not selected. From these results,

it is evident that the Wald-type KOO method constructs the smallest model,

and the coefficients selected by this method are always included in the models

selected by the other methods.

5.2. Poisson Regression Model

Here, we applied the Poisson regression model to the dataset of doctoral

students’ publication records from Long (1997). This dataset consists of

n = 915 doctoral students majoring in biochemistry. The response variable

is the number of papers published by each student by the time they completed

their doctoral program. The following explanatory variables were used in the

Poisson regression model:

� male: Dummy variable indicating gender (1 = male, 0 = female)

� married: Dummy variable indicating marital status (1 = married, 0 =

not married)

� kids: Number of children under age 6

� prestige: Prestige of the graduate program

� mentor: Number of papers published by the student’s mentor

The results are as follows.

n = 915 Wald KOO Step Lasso Wald
k = 6 AIC BIC AIC BIC λmin λ1se prob.

Intercept 0.12 0.19 0.17 0.45 0.00
male 0.27 0.38 0.23 0.24 0.19 0.15

married 0.23 0.15 0.10 0.01
kids -0.19 -0.12 -0.18 -0.14 -0.14 0.23

prestige 0.00
mentor 0.04 0.03 0.03 0.03 0.03 0.02 0.01 1.00

A blank entry indicates that the variable was not selected. These results

demonstrate that the Wald-type KOO method constructs the smallest model,

and the coefficients selected by this method are always included in the models

selected by the other methods.
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5.3. Cox Proportional Hazards Model

In this section, we applied the Cox proportional hazards model to the kidney

dataset, which is available in the ‘survival’ package in R. This dataset includes

information on the recurrence times of infections in kidney patients using

portable dialysis equipment (Therneau and Grambsch, 2000). The analysis

was conducted on n = 76 recurrence time data points using the following

explanatory variables in the Cox proportional hazards model:

� age: Age

� sex: Gender (1 = male, 2 = female)

� GN: Dummy variable for disease type (1 = glomerulonephritis)

� AN: Dummy variable for disease type (1 = acute nephritis)

� PKD: Dummy variable for disease type (1 = polycystic kidney disease)

� frail: Estimated frailty score from the original study

Here, if all dummy variables GN, AN, and PKD are zero, the patient is

classified under “Other” diseases. The results obtained are as follows.

n = 76 Wald KOO Step Lasso Wald
k = 6 AIC BIC AIC BIC λmin λ1se prob.

age 0.01 0.02
sex -1.89 -2.11 -1.89 -2.11 -1.89 -1.92 -1.06 0.99
GN 0.08 0.02
AN 0.73 0.73 0.54 0.06 0.08

PKD -2.11 -2.06 -2.11 -2.06 -2.11 -1.98 -0.93 0.65
frail 1.66 1.78 1.66 1.78 1.66 1.65 1.08 1.00

A blank entry indicates that the variable was not selected. These results

demonstrate that the Wald-type KOO method constructs the most parsimo-

nious model, and the coefficients selected by this method are consistently

included in the models chosen by other variable selection methods.
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5.4. Logistic Regression Model

In this section, we applied a logistic regression model to the MNIST dataset,

a standard dataset for handwritten digit recognition provided by LeCun et al.

(1998), to distinguish between the digits “7” and “9.” The MNIST dataset

consists of 28× 28 pixel grayscale images, with each pixel represented by

an integer value ranging from 0 to 255. To avoid biases in the analysis, we

focused only on variables where the median pixel value was between 100 and

150. The following results were obtained using the training data.

n = 12214 Wald KOO Step Lasso Wald
k = 19 AIC BIC AIC BIC λmin λ1se prob.

Intercept -0.496 -0.518 -0.496 -0.518 -0.476 -0.280 0.00
X209 0.006 0.006 0.006 0.006 0.006 0.006 0.003 1.00
X214 0.005 0.004 0.004 0.004 0.004 0.004 0.003 1.00
X235 -0.007 -0.006 -0.006 -0.006 -0.006 -0.006 -0.003 1.00
X244 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.004 1.00
X262 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 0.00
X297 -0.007 -0.009 -0.009 -0.009 -0.009 -0.008 -0.006 1.00
X318 0.006 0.004 0.004 0.004 0.004 0.004 0.003 1.00
X319 0.003 0.003 0.003 0.003 0.003 0.002 0.00
X353 0.003 0.003 0.003 0.003 0.003 0.001 0.07
X408 0.010 0.010 0.009 0.010 0.009 0.009 0.007 1.00
X439 0.002 0.002 0.002 0.002 0.002 0.001 0.00
X491 -0.001 -0.001 -0.001 0.00
X494 0.003 0.003 0.003 0.003 0.003 0.001 0.00
X519 -0.007 -0.005 -0.006 -0.005 -0.006 -0.005 -0.004 0.53
X549 -0.001 -0.001 0.000 0.00
X575 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 0.00
X576 -0.001 -0.002 -0.001 -0.002 -0.001 0.00
X603 0.00

A blank entry indicates that the variable was not selected. The variable

names such as X209 represent the pixel numbers in the 28× 28 pixel image

data. The pixel numbering starts at the top left corner of the image with

X001 and increases row by row from left to right, with higher numbers cor-

responding to pixels closer to the bottom right corner. These results show

that the Wald-type KOO method constructs the smallest model, and the

coefficients selected by this method are consistently included in the models
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chosen by other selection methods. The variable compression rates are as

follows:

n = 12214 Wald KOO Step Lasso
k = 19 AIC BIC AIC BIC λmin λ1se

Number of variables 8 18 16 18 16 19 16
Compression rate 42% 95% 84% 95% 84% 100% 84%

This shows that the Wald-type variable selection method achieves the highest

compression rate. Next, we examine the accuracy of the logistic regression

model in correctly distinguishing between “7” and “9” for each of the models

selected by the different methods.

All Wald KOO Step Lasso
AIC BIC AIC BIC λmin λ1se

Training (n=12214) 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
Test (n=2037) 0.82 0.82 0.83 0.83 0.83 0.83 0.82 0.82

The “All” model uses all 19 variables, while “Training” refers to the data used

to build the model, and “Test” refers to the remaining data. The results show

that the accuracy of the model selected by the Wald-type method does not

significantly differ from the accuracy of models selected by other methods.

It is important to note that the accuracy is not 1 because the purpose of the

proposed method is to select the true model with a probability of 1, not to

achieve perfect classification accuracy.

6. Application: Extending the Method

In this section, we propose a method that can be applied to a broader

range of contexts.

6.1. General Form of the Wald-type KOO Method

Here, we describe the Wald-type KOO method in a form that can be applied

not only to generalized linear models but also to other settings.
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Consider a more general framework. Assume that the sample data are

generated from a distribution with parameters θ:

x1, . . . ,xn
i.i.d.∼ G(θ).

Here, θ represents the parameters of interest in the analysis, similar to how

µ and σ2 characterize a normal distribution, or how regression coefficients βi

are the focus in multiple regression analysis.

Given θ as a k×1 vector, we examine each parameter θi for i = 1, . . . , k to

determine which of the following conditions it satisfies relative to a reference

value θ0i:

θi < θ0i, θi > θ0i, θi = θ0i.

Each parameter θi must satisfy one of these conditions. For example, in

multiple regression analysis, θi = βi and θ0i = 0, so we assess whether each

regression coefficient βi is zero or not.

We categorize the parameters into three groups: those greater than θ0i

(Greater), those less than θ0i (Less), and those equal to θ0i (Equal). This

can be expressed as:

M∗ : θℓ1 < θ0ℓ1 , . . . , θℓL < θ0ℓL , θg1 > θ0g1 , . . . , θgG > θ0gG , θe1 = θ0e1 , . . . , θeE = θ0eE ,

L+G+ E = k, {ℓ1, . . . , ℓL, g1, . . . , gG, e1, . . . , eE} = {1, . . . , k}.

For consistency with terminology used in variable selection, we refer to M∗

as the true model. To facilitate mathematical notation, we define the value

Ji for each index i as follows:

In M∗ : θi < θ0i ⇒ Ji = −1, θi > θ0i ⇒ Ji = 1, θi = θ0i ⇒ Ji = 0.

We then collect these into a vector J = (J1, . . . , Jk)
′. This vector J contains

the state of each parameter in M∗. For example, in multiple regression anal-

ysis, J indicates whether each regression coefficient βi is positive, negative,

or zero when θi = βi and θ0i = 0. Variable selection can thus be seen as

identifying the non-zero elements of J .
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The Wald-type KOO method proposed in this paper makes individual

decisions for each parameter based on a test statistic Ti. The decision is

made using a threshold d > 0 as follows:

Ti < −d ⇒ θi < θ0i, Ti > d ⇒ θi > θ0i, −d ≤ Ti ≤ d ⇒ θi = θ0i.

The results of these decisions are then summarized in Ĵi as follows:

Ti < −d ⇒ Ĵi = −1, Ti > d ⇒ Ĵi = 1, −d ≤ Ti ≤ d ⇒ Ĵi = 0.

The overall decision vector is then Ĵ = (Ĵ1, . . . , Ĵk). In this paper, we focus

on the property that Ĵ converges in probability to J under an asymptotic

framework, which we refer to as consistency. For example, in multiple re-

gression analysis, the test statistic Ti could be expressed as the difference

between AIC values, Ti = AIC−i − AICFull, where AIC−i is the AIC when

excluding βi, and the threshold d is set to 0.

6.2. Proposed Test Statistic

In this context, we consider the following test statistic for making decisions

about each parameter:

Ti =
θ̂i − θ0i√
V̂ar(θ̂i)

, i = 1, . . . , k,

where θ̂i is the maximum likelihood estimator of θi. The statistic Ti is known

as the Wald-type statistic. The threshold d is defined as:

d = n1/4.
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We impose the following assumptions on the sample size n, the number of

parameters k, the threshold d, and the estimator θ̂i:

A1’ n → ∞, d = n1/4, k = O(na), 0 ≤ a <
1

2
,

A2’ Consistency of the estimator (1): Under A1’

θ̂i = θi +Op(n
−1/2),

A3’ Consistency of the estimator (2): Under A1’

For any ε > 0, P (|θ̂i − θi| ≥ ε) = O(n−1/2),

A4’ Variance of the estimator: Under A1’

Var(θ̂i) = O(n−1),

A5’ Wald-type probability evaluation: Under A1’

P

 θ̂i − θ0i√
V̂ar(θ̂i)

≥ x

 = P

 θ̂i − θ0i√
Var(θ̂i)

≥ x

+O(n−1/2).

Under these assumptions, the following result holds:

Theorem 6.1. If assumptions A0’ through A5’ are satisfied, then:

lim
n→∞

P (Ĵ = J) = 1

Note that Theorem 3.1 corresponds to the case where θ0i = 0.

6.3. Estimation of Standard Errors Using Bootstrap

In the method proposed in this paper, the state of each parameter is de-

termined using Ti, which requires the prior estimation of the standard error

of the estimator θ̂i, denoted as

√
V̂ar(θ̂i). In cases where the standard er-

ror is not provided, we propose a method to construct Ti by estimating the

standard error using the Bootstrap method.

Let B denote the number of bootstrap samples, and let θ̂#ij represent the

estimator obtained from the j-th bootstrap sample. The standard error can
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be estimated as follows:

σ̂#
i =

√√√√ 1

B

B∑
j=1

(θ̂#ij − θ̂i)2, i = 1, . . . , k.

Using this bootstrap-estimated standard error, the test statistic Ti is then

constructed as:

Ti =
θ̂i − θ0i

σ̂#
i

.

We assume the following relationship between the standard error and its

bootstrap estimate:

C1 Under A1’: σ̂#
i =

√
V̂ar(θ̂i) +Op(n

−1/2).

Under this assumption, the following theorem holds:

Theorem 6.2. Under assumptions A0’ through A5’ and C1, the test statistic

Ti constructed using the bootstrap method satisfies:

lim
n→∞

P (Ĵ = J) = 1.

6.4. Numerical Experiment

In this section, we conducted numerical experiments using the generalized

Wald-type KOO method. The experiment focuses on the structure of means

across three groups. The samples from the three groups are given as follows:

x11, . . . ,x1n1

i.i.d.∼ G : E[x1] = µ1,Var(x1) = Σ1,

x21, . . . ,x2n2

i.i.d.∼ G : E[x2] = µ2,Var(x2) = Σ2,

x31, . . . ,x3n3

i.i.d.∼ G : E[x3] = µ3,Var(x3) = Σ3,

where x1j,x2j,x3j are mutually independent.

Here, µi = (µi1, . . . , µip)
′. The goal is to determine the extent to which

the components µij of the mean vectors of each group differ. The difference
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between the means of groups j1 and j2 in the i-th component is defined and

assessed as follows:

Tij1j2 =
x̄ij1 − x̄ij2

σ̂#
ij1j2

, i = 1, . . . , k,

Tij1j2 > dj1j2 ⇒ µij1 − µij2 > 0,

Tij1j2 < −dj1j2 ⇒ µij1 − µij2 < 0,

− dj1j2 ≤ Tij1j2 ≤ dj1j2 ⇒ µij1 − µij2 = 0,

dj1j2 = n
1/4
j1j2

, nj1j2 = min(nj1 , nj2),

σ̂#
j1j2

=

√√√√ 1

B

B∑
j=1

(
(x̄#

ij1
− x̄#

ij2
)− (x̄ij1 − x̄ij2)

)2
.

Here, x̄#
ij represents the mean from the resampled data.

The simulation was conducted under the following settings:

µ1 = (1p1 ,1p2 ,−1p3 ,0p4 ,0p5)
′,

µ2 = (0p1 ,0p2 ,0p3 ,0p4 ,0p5)
′,

µ3 = (−1p1 ,0p2 ,1p3 ,1p4 ,0p5)
′,

p = p1 + p2 + p3 + p4 + p5, p1 = p2 = p3 = p4 = p5,

Σi : Diagonal elements are generated from a uniform distribution on (1, 2),

and off-diagonal elements from a uniform distribution on (0, 1).

xij = µi + Σ
1/2
i zij, i = 1, . . . , n, j = 1, 2, 3,

where the components of zij are independently and identically distributed.

The distribution of zij was considered under the following cases:

Standard normal distribution: zij ∼ N(0, 1),

Standardized uniform distribution: zij =
uij − 1/2√

1/12
, uij ∼ U(0, 1),

Standardized binomial distribution: zij =
xij − 1/2√

1/4
, xij ∼ Bin(1, 1/2),

Standardized Poisson distribution: zij = xij − 1, xij ∼ Pois(1).
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The mean structures for each dimension are represented as follows:

p1 :µ1 > µ2 > µ3,

p2 :µ1 > µ2 = µ3,

p3 :µ1 < µ2 < µ3,

p4 :µ1 = µ2 < µ3,

p5 :µ1 = µ2 = µ3.

The results for the true model selection probabilities across each dimension

and overall are presented below.

Distribution n p p1 p2 p3 p4 p5 all

Normal 10 5 0.95 0.85 0.95 0.86 0.76 0.53
50 5 1.00 0.99 1.00 0.99 0.97 0.96
100 100 1.00 0.96 1.00 0.96 0.89 0.82
500 100 1.00 1.00 1.00 1.00 1.00 1.00

Uniform 10 5 0.96 0.86 0.96 0.85 0.75 0.54
50 5 1.00 0.99 1.00 0.99 0.97 0.95
100 100 1.00 0.96 1.00 0.96 0.90 0.83
500 100 1.00 1.00 1.00 1.00 1.00 1.00

Binomial 10 5 0.96 0.86 0.96 0.86 0.76 0.55
50 5 1.00 0.99 1.00 0.99 0.97 0.95
100 100 1.00 0.96 1.00 0.96 0.89 0.83
500 100 1.00 1.00 1.00 1.00 1.00 1.00

Poisson 10 5 0.94 0.85 0.95 0.85 0.75 0.51
50 5 1.00 0.99 1.00 0.99 0.97 0.95
100 100 1.00 0.96 1.00 0.97 0.90 0.83
500 100 1.00 1.00 1.00 1.00 1.00 1.00

Here, the selection probability for pi represents the probability of correctly

identifying the true structure in all dimensions corresponding to pi, and “all”

indicates the probability of correctly identifying the true structure across all

dimensions.

These results suggest that, given a sufficiently large sample size, the prob-

ability of selecting the true structure is high, regardless of the distribution.

The differences in distribution did not have a significant impact on the se-

lection probabilities in this study.
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6.5. Application to Real Data

In this section, we analyze data from three species of penguins, as presented

in Gorman et al. (2014). This dataset, known as the Penguin Dataset, is

available on Kaggle and is also incorporated into the Python data visualiza-

tion library seaborn. After removing entries with missing values, we analyzed

n = 333 samples (Adelie: n1 = 146, Chinstrap: n2 = 68, Gentoo: n3 = 119)

to examine the mean structure of the following measurements:

bill length : Length of the penguin’s bill (mm)
bill depth : Depth of the penguin’s bill (mm)

flipper length : Length of the penguin’s flipper (mm)
body mass : Body mass of the penguin (g)

Using the test statistics as conducted in the numerical experiments, the mean

structure was analyzed, yielding the following results:

Adelie Chinstrap Gentoo Selected Mean Structure
bill length 38.8 48.8 47.6 Adelie<Chinstrap = Gentoo
bill depth 18.3 18.4 15.0 Adelie = Chinstrap>Gentoo

flipper length 190.1 195.8 217.2 Adelie = Chinstrap<Gentoo
body mass 3706.2 3733.1 5092.4 Adelie = Chinstrap<Gentoo

7. Concluding Remarks

In this paper, we proposed a simple and unified method that possesses

consistency in variable selection. Through applications to regression models,

logistic regression models, Poisson regression models, and Cox proportional

hazards models, we found that the proposed method exhibits consistency in

variable selection, provided that the sample size is sufficiently large. How-

ever, for logistic regression models, the convergence is slower, necessitating

a larger sample size compared to other models. Additionally, we presented

a method for estimating the selection probability, which is asymptotically

median unbiased. Similar to the consistency results, the logistic regression
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model showed slower convergence, requiring more samples than the other

models. We also demonstrated the applicability of this method to more

complex model selection scenarios.

For future work, it should be noted that the results presented here were

obtained under conditions where the number of variables was not excessively

large relative to the sample size. However, the numerical results suggest

that the theoretical conditions provided could be relaxed under certain cir-

cumstances. Further refinement and evaluation may allow for a relaxation

of these conditions. Moreover, given the slower convergence observed in the

logistic regression model, exploring faster methods for achieving convergence

is another potential direction for future research.

Appendix: Proof of Consistency and Selection

Probability

A1 Proof of Consistency

In this section, we provide a proof of the consistency of the proposed

test statistic. We specifically extend Theorem 3.1 to Theorem 6.1. First, we

prove the consistency of the test statistic Ti without using bootstrap standard

errors. Consistency of Ti with respect to the threshold d can be rewritten as
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follows:

lim
n→∞

P (Ĵ = J) = 1

⇔ lim
n→∞

P

({
L⋂
i=1

Tℓi < −d

}
∩

{
G⋂
i=1

Tgi > d

}
∩

{
E⋂
i=1

−d ≤ Ti ≤ d

})
= 1

⇔ lim
n→∞

P

({
L⋂
i=1

Tℓi < −d

}
∩

{
G⋂
i=1

Tgi > d

}
∩

{
E⋂
i=1

|Ti| ≤ d

})
= 1

⇔ lim
n→∞

P

({
L⋃
i=1

Tℓi ≥ −d

}
∪

{
G⋃
i=1

Tgi ≤ d

}
∪

{
E⋃
i=1

|Tei | > d

})
= 0

To establish this, it suffices to show the following:

lim
n→∞

L∑
i=1

P (Tℓi ≥ −d) + lim
n→∞

G∑
i=1

P (Tgi ≤ d) + lim
n→∞

E∑
i=1

P (|Tei | > d) = 0

This is derived from the upper bound given by the complement probability

and the sum of disjoint events.

First, we consider the evaluation of P (Tℓi ≥ −d). To simplify the nota-

tion, we denote the index i as i ∈ {ℓi}. Note that in the true model, θi < θ0i.

We have:

P (Ti ≥ −d) = P

 θ̂i − θ0i√
V̂ar(θ̂i)

≥ −d


= P

 θ̂i − θ0i√
Var(θ̂i)

≥ −d

+O(n−1/2)

= P

(
θ̂i − θ0i ≥ −

√
Var(θ̂i)d

)
+O(n−1/2)

Next, we rearrange the inequality inside the probability as follows:

θ̂i − θ0i ≥ −
√

Var(θ̂i)d

⇔ θ̂i − θi ≥ θ0i − θi −
√

Var(θ̂i)d

= θ0i − θi −O(n−1/2)n1/4 = θ0i − θi −O(n−1/4)
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Since θi < θ0i, i.e., θ0i−θi > 0, we can choose a sufficiently large n such that:

θ0i − θi −
√

Var(θ̂i)d > 0

In this context, it is well-known that for a random variable X and a

constant a > 0, the following inequality holds:

P (X ≥ a) ≤ P (X ≤ −a ∪X ≥ a) = P (|X| ≥ a)

Thus, for sufficiently large n, we can evaluate P (Ti ≥ −d) as follows:

P (Ti ≥ −d) = P

(
θ̂i − θ0i ≥ −

√
Var(θ̂i)d

)
+O(n−1/2)

= P

(
θ̂i − θi ≥ θ0i − θi −

√
Var(θ̂i)d

)
+O(n−1/2)

≤ P

(
|θ̂i − θi| ≥ θ0i − θi −

√
Var(θ̂i)d

)
+O(n−1/2)

= O(n−1/2) +O(n−1/2) = O(n−1/2)

From this, we have:

L∑
i=1

P (Tℓi ≥ −d) ≤
L∑
i=1

O(n−1/2) ≤ k×O(n−1/2) = O(na)×O(n−1/2) = O(na−1/2)

where a satisfies 0 ≤ a < 1/2, implying that a − 1/2 < 0, so this term

converges to zero as n increases.

Next, consider the evaluation of P (Tgi ≤ d). This can be shown in a

similar manner as before. To simplify the notation, let i ∈ {gi} denote the

index i. Note that in the true model, θi > θ0i. Therefore,

P (Ti ≤ d) = P

− θ̂i − θ0i√
V̂ar(θ̂i)

≥ −d


= P

− θ̂i − θ0i√
Var(θ̂i)

≥ −d

+O(n−1/2)

= P

(
−θ̂i + θ0i ≥ −

√
Var(θ̂i)d

)
+O(n−1/2).
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The inequality within the probability can be rewritten as follows:

−θ̂i + θ0i ≥ −
√
Var(θ̂i)d ⇔ θi − θ̂i ≥ θi − θ0i −

√
Var(θ̂i)d

= θi − θ0i −O(n−1/2)n1/4 = θi − θ0i −O(n−1/4).

Since θi > θ0i, implying θi− θ0i > 0, we can choose a sufficiently large n such

that

θi − θ0i −
√

Var(θ̂i)d > 0.

Therefore, for sufficiently large n:

P (Ti ≤ d) = P

(
−θ̂i + θ0i ≥ −

√
Var(θ̂i)d

)
+O(n−1/2)

= P

(
θi − θ̂i ≥ θi − θ0i −

√
Var(θ̂i)d

)
+O(n−1/2)

≤ P

(
|θi − θ̂i| ≥ θi − θ0i −

√
Var(θ̂i)d

)
+O(n−1/2)

= P

(
|θ̂i − θi| ≥ θi − θ0i −

√
Var(θ̂i)d

)
+O(n−1/2)

= O(n−1/2) +O(n−1/2) = O(n−1/2).

From this, we have:

G∑
i=1

P (Tgi ≤ d) ≤
G∑
i=1

O(n−1/2) ≤ k×O(n−1/2) = O(na)×O(n−1/2) = O(na−1/2),

where a satisfies 0 ≤ a < 1/2, implying that a − 1/2 < 0, so this term

converges to zero as n increases.

Finally, consider the evaluation of P (|Tei | > d). Again, to simplify the

notation, let i ∈ {ei} denote the index i. By Chebyshev’s inequality:

P (|Ti| > d) ≤ 1

d2
,

which implies:
E∑
i=1

P (|Tei | > d) ≤ k

d2
= O(na−1/2),
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where k = na and 0 < a < 1/2, so a− 1/2 < 0, and this term also converges

to zero.

In summary:

0 ≤
L∑
i=1

P (Tℓi ≥ −d) +
G∑
i=1

P (Tgi ≤ d) +
E∑
i=1

P (|Tei | > d)

≤ O(na−1/2) +O(na−1/2) +O(na−1/2) = O(na−1/2),

which implies:

lim
n→∞

L∑
i=1

P (Tℓi ≥ −d) + lim
n→∞

G∑
i=1

P (Tgi ≤ d) + lim
n→∞

E∑
i=1

P (|Tei | > d) = 0.

Thus, we have shown that P (Ĵ = J) → 1.

Next, we consider the proof of Theorem 6.2. In proving the consistency

when using bootstrap methods, the relationship between the standard error

and its bootstrap estimate under assumption C1 is given by

σ̂#
i =

√
V̂ar(θ̂i) +Op(n

−1/2).

From this, the following holds:

P

(
θ̂i − θ0i

σ̂#
i

≥ x

)
= P

 θ̂i − θ0i√
Var(θ̂i)

≥ x

+O(n−1/2).

Thus, the proof proceeds in the same manner as the previous consistency

proof.

A2 Estimation of Selection Probability

In this section, for simplicity, we denote β = βi and d = n1/4.
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First, consider the case where β > 0. The selection probability p can be

expressed as follows:

p = P

∣∣∣∣∣∣ β̂√
V̂ar(β̂)

∣∣∣∣∣∣ > d


= P

 β̂√
V̂ar(β̂)

> d

+ P

 β̂√
V̂ar(β̂)

< −d

 .

Focusing on the second term, we can evaluate it using assumption A3 as

follows:

P

 β̂√
V̂ar(β̂)

< −d

 = P

(
β̂ − β < −β − d

√
V̂ar(β̂)

)

≤ P

(
|β̂ − β| > β + d

√
V̂ar(β̂)

)
= O(n−1/2).

From this, we have:

0 ≤ P

 β̂√
V̂ar(β̂)

< −d

 ≤ O(n−1/2),

which implies:

P

 β̂√
V̂ar(β̂)

< −d

 = O(n−1/2).

Therefore, the selection probability p is given by:

p = P

 β̂√
V̂ar(β̂)

> d

+O(n−1/2).
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Assumption B1 assumes asymptotic normality of the estimator β̂, so we have:

P

 β̂√
V̂ar(β̂)

> d

 = P

 β̂ − β√
V̂ar(β̂)

> d− β√
V̂ar(β̂)


= 1− Φ

d− β√
V̂ar(β̂)

+ o(1),

where Φ(x) is the cumulative distribution function of the standard normal

distribution, given by Φ(x) = P (Z ≤ x), Z ∼ N(0, 1). Thus, the selection

probability p is:

p = 1− Φ

d− β√
V̂ar(β̂)

+ o(1).

Next, consider the estimation of the selection probability p̂. Given a sam-

ple X = (X1, . . . , Xn)
′, the estimator β̂ = β̂(X) is obtained. The dis-

tribution of the estimator β̂# = β̂(X#) based on the bootstrap sample

X# = (X#
1 , . . . , X#

n )′ is given by assumption B2 as:

P

 β̂ − β√
V̂ar(β̂)

< x

 = P

 β̂# − β̂√
V̂ar(β̂)

< x

∣∣∣∣∣X
+O(n−1).

Since the distribution of β̂# can be computed using the empirical distribution

function, we have:

P

 β̂# − β̂√
V̂ar(β̂)

< x

∣∣∣∣∣X
 =

1

B

B∑
j=1

I

 β̂#
j − β̂√
V̂ar(β̂)

< x

+O(B−1).
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Therefore, the estimated selection probability p̂ is:

p̂ =
1

B

B∑
j=1

I

∣∣∣∣∣∣ β̂#
j√

V̂ar(β̂)

∣∣∣∣∣∣ > d


=

1

B

B∑
j=1

I

 β̂#
j√

V̂ar(β̂)

> d

+
1

B

B∑
j=1

I

 β̂#
j√

V̂ar(β̂)

< −d


= P

 β̂# − β̂√
V̂ar(β̂)

> d− β̂√
V̂ar(β̂)

∣∣∣∣∣X
+ P

 β̂# − β̂√
V̂ar(β̂)

< −d− β̂√
V̂ar(β̂)

∣∣∣∣∣X
+O(B−1).

The first term, using assumptions B1 and B2, evaluates as:

P

 β̂# − β̂√
V̂ar(β̂)

> d− β̂√
V̂ar(β̂)

∣∣∣∣∣X
 = 1− Φ

d− β̂√
V̂ar(β̂)

+ o(1).

The second term is evaluated as follows:

P

 β̂# − β̂√
V̂ar(β̂)

< −d− β̂√
V̂ar(β̂)

∣∣∣∣∣X
 = P

 β̂ − β√
V̂ar(β̂)

< −d− β√
V̂ar(β̂)

+O(n−1)

= P

 β̂√
V̂ar(β̂)

< −d

+O(n−1)

= O(n−1/2).

Thus, the estimated selection probability p̂ is:

p̂ = 1− Φ

d− β̂√
V̂ar(β̂)

+ o(1).

Noting that Φ(x) is a monotonically increasing function with an inverse func-
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tion Φ−1(x), we have:

P (p̂ ≤ p) = P

1− Φ

d− β̂√
V̂ar(β̂)

 ≤ 1− Φ

d− β√
V̂ar(β̂)

+ o(1)

= P

Φ

d− β̂√
V̂ar(β̂)

 ≥ Φ

d− β√
V̂ar(β̂)

+ o(1)

= P

d− β̂√
V̂ar(β̂)

≥ d− β√
V̂ar(β̂)

+ o(1)

= P

 β̂ − β√
V̂ar(β̂)

≤ 0

+ o(1)

=
1

2
+ o(1),

where the last equality follows from the asymptotic normality assumption in

B1, and assuming that the O(·) term can be taken outside the probability

expression. Thus,

P (p̂ ≥ p) = 1− P (p̂ ≤ p) =
1

2
+ o(1).

This shows that the median of the estimated selection probability p̂ is a good

approximation of the true selection probability p when β > 0. The case for

β < 0 can be shown similarly.

References

[1] Bai, Z., Choi, K. P., Fujikoshi, Y. and Hu, J. (2024). KOO approach

for scalable variable selection problem in large-dimensional regression.

To appear in Statistica Sinica.

[2] Dobson, A.J. and Barnett, A. (2008). An Introduction to General-

ized Linear Models. CRC Press.

43



[3] Fujikoshi, Y., Sakurai, T. andYanagihara, H. (2014). Consistency

of high-dimensional AIC-type and Cp-typ criteria in multivariate linear

regression. Journal of Multivariate Analysis, 123, 184–200.

[4] Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization

paths for generalized linear models via coordinate descent. Journal of

Statistical Software, 33, 1–22.

[5] Gorman, K. B., Williams, T. D. and Fraser, W. R. (2014). Ecolog-

ical sexual dimorphism and environmental variability within a commu-

nity of Antarctic penguins (genus Pygoscelis). PLoS ONE 9(3):e90081.

https://doi.org/10.1371/journal.pone.0090081

[6] Hall, P. (1992). The Bootstrap and Edgeworth Expansion, Springer-

Verlag, New York.

[7] Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998).

Gradient-based learning applied to document recognition, in Proceed-

ings of the IEEE, 86 (11), 2278–2324

[8] Long, J. S. (1997). Regression Models for Categorical and Limited

Dependent Variables, Sage Publications.

http://investigadores.cide.edu/aparicio/data/refs/Long

[9] Nishii, R. , Bai, Z. D. andKrishnaia, P. R. (1988). Strong consistency

of the information criterion for model selection in multivariate analysis.

Hiroshima Mathematical Journal, 18, 451–462.

[10] Therneau, T. M. and Grambsch, P. M. (2000). Modeling Survival

Data: Extending the Cox Model, Springer, New York.

https://cran.r-project.org/web/packages/survival/survival.pdf

[11] Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statis-

tics with S, Fourth Edition, Springer, New York. https://cran.r-

project.org/web/packages/MASS/MASS.pdf

44



[12] Yanagihara, H., Wakaki, H. and Fujikoshi, Y. (2015). A consis-

tency property of the AIC for multivariate linear models when the di-

mension and the sample size are large. Electronic Journal of Statistics,

9, 869–897.

[13] Zhao, L. C. , Krishnaiah, P. R. and Bai, Z. D. (1986). On determina-

tion of the number of signals in presence of white noise. J. Multivariate

Anal., 20, 1–25.

45


