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Abstract

This paper is concerned with the selection of variables in large-
dimensional regression using Knock-one-out (KOO) method. One of
studies of KOO methods, Bai et al. (2025) treats the method based on
the Lawley-Hotelling statistic. Their theoretical result guarantees the
strong consistency, but the threshold in the method involves unknown
quantity. Instead of it, they suggested to use the threshold calculated
by bootstrap. In this paper we modify Bai et al. (2025)’s KOO method
by using a threshold which does not contain unknown quantity. We
show that the limiting probability of selecting the true model is equal
to 1 when the dimension and the sample are large. Furthermore, a
method to estimate its selection probability is provided in this paper.
Tendencies of our method are explored numerically through a Monte

Carlo simulation.
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1. Introduction

This paper is concerned with the variable selection problems in multivari-
ate regression model with large-dimensional regression under non-normality.
In general, model selection approaches based on model selection criteria such
as AIC, BIC and Cp involves computational problems as the number of re-
gression variables increases. As an approach to overcome this problem, we
consider KOO approach due to Nishii et al. (1988) and Zhao et al. (1986).

Suppose that there are n observations wyi,...,y, on p response variables
y = (y1,...,yp) and n observations &, ..., &, on k explanatory variables
x = (r1,...,7;)". Here, y; and @; are observations of y and @, respectively,

for the ith subject. Let Y = (y1,...,y,)" and
X=(Z1,....2,) = (x1,...,2x) = (¢}, ] € w).
The multivariate regression model is written as
Y =X0 + &, (1.1)

where © is a k X p regression coefficient matrix, and € = (€1, ..., €,) is the
error matrix. It is assumed that the €;’s are independently and identically
distributed as a p-variate distribution with a mean 0 and a covariance matrix
3. In order to explore a simpler linear structure, we consider to select the
explanatory variables. In general, the selection of x;’s may be decided by
whether the ith row 8; of ® = (04,...,60;) is the null vector or not. We
consider such a selection problem, assuming that 3 is unknown positive
definite.

For notational simplicity, let us identify the set {zy,..., 2} with w =
{1,...,k}. Let j be a subset of w, and X; = (x;,7 € j). Let k; be the
cardinality of j. Denote the model based on X; = (x;,7 € 7) by
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Bai et al. (2025) introduced variable selection methods based on the following
KOO statistics:

~ ~—1 )
K, = tr <2w\j2w) =1,k (1.3)
where for any 7,
nE;=Y'QY, Q;=L -P; P;=X;X,X;)"'X}

and w\j is the set obtained by removing an element j from the set w. Note
that K; is the Lawley-Hotelling statistic (Fujikoshi et al. (2010)) for testing
0; = 0. They proposed a consistent method, but the method involves un-
known quantities. They also proposed a method of approximating the KOO
statistic by Bootstrap approximation.

In this paper, we improve the method proposed by Bai et al. (2025) by
avoiding the use of the bootstrap approach. Under the same assumptions
as Bai et al. (2025), we also show that the limiting probability of selecting
the true model is equal to 1. Furthermore, we also provide a method for
estimating the selection probability of explanatory variables in our proposed
method.

The remainder of this paper is organized as follows: In Section 2, we
propose a modified KOO method of Bai et al. (2025) which is illustrated in
diagrams. In Section 3, we show that our KOO has a consistency property.
In Section 4, our method is explored numerically through a Monte Carlo
simulation. In Section 5, we describe an estimation method for the selec-
tion probability of explanatory variables using our proposed KOO method.
In Section 6, the accuracy of the proposed estimation method is evaluated
through a Monte Carlo simulation. Finally, Section 7 concludes the study

with a summary and future research directions.



2. A modified KOO method

Using the KOO statistic K; in (1.3), Bai et al. (2025) proposed the
following KOO method for selection of explanatory variables:

in={iewn > 200 L 1)

l1—a, —c,

Here 9 is a constant satisfying ¢ € (0,minj¢;, {limn;}), and ¢, = p/n,
a, = k/n. Further,

;= pil ]2-, 6]2 = CB;ijje;E_lej. (22)
The selection method (2.1) means that “j € G20
that jz1 is the estimator of the true model, and it is known (Bai et al. (2025))
that the KOO method (2.1) is consistent under the following conditions (C1)

~ (C4):

& “we select x;”. Note

(C1) : As min{k,p,n} — o0, ¢, =p/n — c € (0,1), and «a, =k/n - o €
0,1), c+a < 1.

(C2) : The true model M, is included in the full model M, M, C M, and
the cordinality |M,| is allowed to diverge as k — oc.

(C3) : The entries ¢; of € are independent and identically distributed
with zero means, unite variances, and finite fourth moments, i.e., 7 =
E(ej;) — 3 € (—o0, 00).

(C4) : Matrix X'X is positive definite for n > k + p.

However, the KOO method (2.1) involves unknown quantities, and so
the authors suggest to approximate the distribution of X; by a Bootstrap

method, and propose the following selection method:
g ={j€w|%;>%,}, (2.3)

where X, is the critical value with at significance level p, which is estimated
by an Algorithm (for the details, see Bai et al (2025)).
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In this paper we suggest to use the following modified KOO method:

/]TF:{jGW|g<j—C—n>aO'n}, (24)

l1—a, —c,
where a is a constant sasifying O(1), and

2(1 — )2
2 _ n/)>n
o= d—an—c)" (2.5)

The quantity o2 is obtained from O'?Zj by putting 7; = 0, where
Urzzj = 262[(1 — ) (14 2n;) + Cnnjz‘]/(l — Qp — Cn)s'
Further, it is known (Bai et al. (2025)) that under (C1) ~ (C7)

cn(1+ 77]')

NG (9@- S an) Jow; — N(0,1).

Here (C5) ~ (C7) are given as follows:

(C5) : E(ed) = 0.

v

(C6) : As min{p,n, k} — oo,
laj ll=o(1), @;Qz; || 6;%" [2= o(p),
where for b= (by,...,b,), || b ||coc= max;—;
(C7) : As min{p,n, k} — oo, n; tends to a constsnt.

Our method 3F will be more executable than 321 and 322. In the next
section we note that 51: has a consistency property.

We explain our method, by using the simulation setting as in Bai et al.
(2025). Simulation replications are 10®. The errors are assumed that e;; ~
N(0,1) and independent, Further, ¥ = I,,, n = 200, p = 40, k = 40, k, = 5.
The components of X were generated from U(1,5). The true parameter
matrices are setted from: 150, where €, = ((0.5)%,...,(0.5)?71). Under

these assumptions we consider the distribution of X;; 7 =1,2,... k.
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Figure 1 presents a box plot of the behavior of X; on the vertical axis,
while the horizontal axis represents the variable indices. The true model is
given by 7. = {1,2,3,4,5}. From this figure, it can be observed that X;
tends to deviate from zero when j is included in the true variables, whereas
X, stays close to zero when j is not included in the true variables. Then, the

red and blue lines in the figure are given as follows:

Red line:j ¢ j. Cn

l—a,—c,

Blue line:j € j, T—§LTTO+0% 9 € (0,mins;}).
—Qy, — Cp, WASHES

Our method draws a green line between the red and blue lines. Here, for
example, the green line in Figure 1 corresponds to the case of a = 1. There-

fore, the green line is mostly over the variation of K, for j ¢ j. and mostly

under variation of j € j..
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Figure 1. The values of X;.



3. Strong consistency

Related to the modified KOO method (2.4), let

~ Cn

T’j = JC]‘ — m — ao0y,. (31)
Then our modified KOO method is expressed as
Je={jew|T;>0}. (32)

It is known (Bai et al. (2014)) that the KOO method jz; has a consistency
under conditions (C1) ~ (C4). This was deduced from the strong limits of
the KOO statistics X; which is as follows: uniformly in j € w,

Cn

5T as]-u f .*7
1_an_cn+0..() ifj &7

(1+7;) C—”+oa,s,(1)), if j € j..

l—a, —c,

ij:

It holds that

~ Cp, 2(1—()én)
T.>0 —= XK, >—— |1 —_— .

Then we find that jp C jz1 if we set 7 € (0, minje;, {limn;}) as

2(1 — o)

T=a —(]_—Ogn—cn)'

This is summarized as the following theorem.

Theorem 3.1. Assume that conditions (C1) ~ (C4) hold and limn; > 0 for
all j € j,. Then, imy proo i =3 Fu if
2(1 —ay, 1
_Al=an) € (O,mln{hm m}) :
) €7«

(1 -, —cy



4. Numerical experiments: consistency

In this section we give simulation results on the estimation method EF
n (2.4). We considered the two cases a = 1,1//2. Our simulation setting
is based on Figure 1 in Bai et al. (2025). However we did not attempt the
cases of n = 1000, 2000.

e The number of trials:102.

n = 100,500, ¢, = p/n =0.2,04, o, = k/n =0.2,0.4, k, = 5.

The components of X were constructed from a sample of U(1,5).

The regression coefficient matrix is given as follows: ® = (0, 0),

®. = 150,. Here 15 is a five-dimensional vector of ones and 6, =
((0.5)°...,(0.5)P~1).

e As the distribution of e;;, we considered; (i) Standard normal distri-
bution, (ii) Uniform distribution; U(0,1), (iii) Biomial distribution;
Bin(1,p), p = (6 —/6)/12, (iv) Chi-square distribution x? with 12
degrees of freedom, (v) t-distribution with 10 degrees of freedom, (vi)
Poisson distribution with parameter 1; Pos(1), (vii) Exponential dis-
tribution with parameter 1; Fxp(1), (viii) Chi-square distribution y?
with 2 degrees of freesdom. Here, all the distributions are normalized

as the means 0 and variances 1.

o a=1,1/V2.

The selection rates associated with our method are given in Tables 1 to 2.

From Tables 1 and 2, we can identify the following tendncies.

(1) The estimator is consistent since the probabilities of selecting the true

models are near 1, except for the case a = 1,n = 500, p = 200, k = 200.

(2) The probabilities of selecting the true models increase as n increases,
for all distributions, and for any given p and k. However, these proba-

bilities decrease as p + k increases.
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Table 1: Selection rates of the true models under (i) ~ (iv).

a=1 a=1/v2

Dist. n P k | Under ‘ True ‘ Over || Under ‘ True ‘ Over
Normal | 100 | 20| 20| 0.00 | 0.97 | 0.03 0.00 | 0.87 | 0.13
Normal | 500 | 100 | 100 || 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
Normal | 100 | 40| 20| 0.16 | 0.83 | 0.00 0.03 | 0.94 | 0.04
Normal | 500 | 200 | 100 || 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
Normal | 100 | 20| 40| 0.01 | 0.91 | 0.08 0.00 | 0.66 | 0.34
Normal | 500 | 100 | 200 || 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
Normal | 100 | 40| 40 || 0.89 | 0.10 | 0.01 0.67 | 0.25 | 0.08
Normal | 500 | 200 | 200 || 0.67 | 0.33 | 0.00 0.08 | 0.92 | 0.00
Uniform | 100 | 20 | 20| 0.00 | 0.99 | 0.02 0.00 | 0.89 | 0.11
Uniform | 500 | 100 | 100 || 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
Uniform | 100 | 40 | 20| 0.17 | 0.84 | 0.00 0.02 | 0.94 | 0.04
Uniform | 500 | 200 | 100 | 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
Uniform | 100 | 20 | 40| 0.00 | 0.91 | 0.09 0.00 | 0.69 | 0.31
Uniform | 500 | 100 | 200 || 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
Uniform | 100 | 40 | 40 | 0.81 | 0.18 | 0.01 0.50 | 0.41 | 0.09
Uniform | 500 | 200 | 200 || 0.87 | 0.14 | 0.00 0.22 | 0.78 | 0.00
Binomial | 100 | 20 | 20 || 0.00 | 0.98 | 0.03 0.00 | 0.86 | 0.14
Binomial | 500 | 100 | 100 | 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
Binomial | 100 | 40 | 20 || 0.24 | 0.76 | 0.00 0.06 | 0.91 | 0.04
Binomial | 500 | 200 | 100 | 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
Binomial | 100 | 20 | 40 | 0.00 | 0.91 | 0.09 0.00 | 0.67 | 0.33
Binomial | 500 | 100 | 200 | 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
Binomial | 100 | 40 | 40 || 0.77 | 0.22 | 0.01 0.47 | 0.45 | 0.08
Binomial | 500 | 200 | 200 | 0.80 | 0.20 | 0.00 0.16 | 0.84 | 0.00

X1o 100 | 20| 20| 0.00 | 097 | 0.03 0.00 | 0.85 | 0.15

X3y 500 | 100 | 100 | 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00

X3, 100 | 40| 20| 0.23 | 0.77 | 0.00 0.05 | 0.92 | 0.03

X3, 500 | 200 | 100 || 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00

X3y 100 | 20| 40| 0.11 | 0.82 | 0.08 0.03 | 0.64 | 0.33

X3y 500 | 100 | 200 || 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00

X3y 100 | 40| 40| 0.73 | 0.25 | 0.02 0.43 | 0.46 | 0.11

X3y 500 | 200 | 200 || 0.79 | 0.21 | 0.00 0.17 | 0.84 | 0.00




Table 2: Selection rates of the true models under (v) ~ (viii).

a=1 a=1/v2

Dist. n P k | Under ‘ True ‘ Over || Under ‘ True ‘ Over
t1o 100 | 20| 20| 0.00 | 0.97 | 0.03 0.00 | 0.87 | 0.13
t1o 500 | 100 | 100 || 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
t1o 100 | 40| 20| 0.15 | 0.84 | 0.01 0.02 | 0.96 | 0.02
t1o 500 | 200 | 100 || 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
t1o 100 | 20| 40| 0.01 | 0.92 | 0.08 0.00 | 0.71 | 0.29
t10 500 | 100 | 200 || 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
to 100 | 40| 40| 0.86 | 0.14 | 0.01 0.61 | 0.32 | 0.07
t1o 500 | 200 | 200 || 0.73 | 0.27 | 0.00 0.14 | 0.86 | 0.00
Poisson | 100 | 20| 20| 0.00 | 0.97 | 0.03 0.00 | 0.86 | 0.14
Poisson | 500 | 100 | 100 | 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
Poisson | 100 | 40 | 20 || 0.17 | 0.83 | 0.00 0.02 | 0.94 | 0.03
Poisson | 500 | 200 | 100 | 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
Poisson | 100 | 20| 40| 0.01 | 0.91 | 0.08 0.00 | 0.67 | 0.33
Poisson | 500 | 100 | 200 | 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
Poisson | 100 | 40 | 40 || 0.67 | 0.31 | 0.02 0.34 | 0.54 | 0.12
Poisson | 500 | 200 | 200 | 0.85 | 0.15 | 0.00 0.26 | 0.75 | 0.00
Exp. | 100 | 20| 20| 0.00 | 0.98 | 0.02 0.00 | 0.88 | 0.12
Exp. | 500 | 100 | 100 || 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
Exp. | 100 | 40| 20| 0.24 | 0.75 | 0.00 0.06 | 0.91 | 0.04
Exp. | 500 | 200 | 100 || 0.01 | 0.99 | 0.00 0.00 | 1.00 | 0.00
Exp. | 100 | 20| 40| 0.01 | 0.90 | 0.09 0.00 | 0.71 | 0.28
Exp. | 500 | 100 | 200 || 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
Exp. [ 100 | 40| 40| 0.75 | 0.23 | 0.01 0.48 | 0.44 | 0.09
Exp. | 500 | 200 | 200 || 0.62 | 0.38 | 0.00 0.10 | 0.90 | 0.00
% 100 | 20| 20| 0.00 | 0.98 | 0.02 0.00 | 0.88 | 0.12
X3 500 | 100 | 100 || 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
X3 100 | 40| 20| 0.17 | 0.83 | 0.00 0.03 | 0.95 | 0.03
X3 500 | 200 | 100 || 0.01 | 0.99 | 0.00 0.00 | 1.00 | 0.00
X3 100 | 20| 40| 0.02 | 091 | 0.07 | 0.00 | 0.69 | 0.31
X3 500 | 100 | 200 || 0.00 | 1.00 | 0.00 0.00 | 1.00 | 0.00
X3 100 | 40| 40| 0.74 | 0.24 | 0.02 0.46 | 0.45 | 0.10
X3 500 | 200 | 200 || 0.71 | 0.29 | 0.00 0.15 | 0.85 | 0.00
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(3) Therefore, the probabilities of selecting the true models are relatively

low in cases with a = 1, especially when n = 100, p = 200, k = 200.

(4) However, observing the tendencies of selecting the true models in cases
of n =100 and n = 500, we see that these probabilities tend toward 1.

(5) For the cases n = 500 and a = 1, the consistency is relatively weak,

especially when p and k£ become large.

(6) The case a = 1/v/2 selects significant variables more easily than the

case a = 1. This is because the threshold becomes smaller when a =

1/3/2.

(7) Thus, in the case a = 1/4/2, the probabilities of selecting the true

models are higher compared to the case a = 1.

5. Estimation of selection probabilities

In this section, we propose a method to estimate the selection probabili-
ties of explanatory variables using our proposed KOO method. From Bai et
al. (2025), it is shown under (C1) ~ (C7) that

Y (gcj _ %) J725 — N(0,1).

Therefore, the selection probabilities of explanatory variables using our pro-

posed KOO method is expressed as follows:

pj=P (ij S — > aan)

l—a,—c,

Cn
<10 (vp (oo ) o)

Here, ®(z) is the cumulative-distribution function of the standard normal

distribution. Then, we consider the following estimator p; for p;.

A~ CTZ A A~
=10 (Vo (o~ ) fu)
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Here,

) 1 n—k—p—1, -1,
;= ]—)a:;.Qjazj <f0j2 0; —pvii) ,
0 =XX)XY=(9),), =3y XX) =),
where,
1 p (1 Af a1 s
'"Qur,=—, K. =%-2Qx,0.3 0,]. 5.1
wJQ]a:J 'Ujj7 J n (pij]w] J ]) ( )
Thus, we obtain
p n Cn o -1

=L (1) =

ﬁn—k—p—l 1—¢,—a,

From this result and Bai et al. (2025), it is shown under (C1) ~ (C7) that

Cn
VP

Furthermore, it follows that,

= —a Ul =) /on; = N, 1),

. P A (1 —an)(1+20) + catlj
N — Mj, Opj = 2c2 (1o ! Onj-

Under (C1) ~ (C7), the estimator p; of the selection probability p; has the
following properties. Noting that ®(x) is a monotonically increasing function

with an inverse function ®~!(z), we obtain

P(p; < pj)
_ P<1 s (\/13 (@an - 1_;#77]) /&nj)
<1-0 (\/]_9 (aan - Hfﬁnj) /onj)> +o(1)
-r (o) [
> /P (aan - F;ﬁm) / anj) +o(1)
=P (VP2 Gy =) oy > 0) +ol1) = 5 +o(1)

This is summarized as the following theorem.

l—a,—c,
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Theorem 5.1. Assume that conditions (C1)-(C7) hold. Then, the estimator

p; for pj is asymptotically median-unbiased.

6. Numerical experiments: selection proba-
bilities

In this section we give simulation results on estimate the selection proba-
bilities of explanatory variables using our proposed KOO method. Here, the

selection probability p; and its estimator p; are given as follows.

pj=P <9<j & aan>

l—a, —c,

A Cn . A
er-o{alo ) o)

We considered the following cases:
e The number of trials:103.
e n= 100,500, ¢, = p/n=0.2,04, o, = k/n = 0.2,0.4, k, = 5.
e The components of X were constructed from a sample of U(1,5).

e The regression coefficient matrix is given as follows: ® = (0, 0),
O, = (61,...,05) = (0;;). For n = 100, the elements 6;; are indepen-
dently generated from the following distributions. 6;; ~ U(0.20,0.25),
Oy ~ U(0.25,0.30), 03 ~ U(0.30,0.35), Oi ~ U(0.35,0.40), O ~
U(0.40,0.45). For n = 500, the elements 6;; are independently gen-
erated from the following distributions. 6;; ~ U(0.130,0.135), ;5 ~
U(0.135,0.140), ;3 ~ U(0.140,0.145), 6;4 ~ U(0.145,0.150), ;5 ~
U(0.150,0.155).

e As the distribution of e;;, we considered; (i) Standard normal distri-
bution, (ii) Uniform distribution; U(0,1), (iii) Biomial distribution;

13



Bin(1,p), p = (6 — v/6)/12, (iv) Chi-square distribution x? with 12
degrees of freedom, (v) t-distribution with 10 degrees of freedom, (vi)
Poisson distribution with parameter 1; Pos(1), (vii) Exponential dis-
tribution with parameter 1; Exp(1), (viii) Chi-square distribution x?
with 2 degrees of freesdom. Here, all the distributions are normalized

as the means 0 and variances 1.
o a0 —=1.

The results of the selection probabilities and their estimators are given in
Tables 3 to 6.

In Tables 3 to 6, p; denotes the selection probability, and “med” denotes
the median of its estimator p;. The column 6y,..., 05 indicates the selec-
tion probabilities of parameters included in the true model, i irﬁunk denotes
the minimum selection probability among variables not included in the true
model, and Zi%axk denotes the maximum selection probability among those

not included in the true model.

From Tables 3 to 6, we can identify the following tendncies.
(1) The median of p; is closer to p; for n = 500 than for n = 100.

(2) As p or k increases, the median of p; becomes increasingly distant from

Dj-

(3) The selection probabilities p; for variables not included in the true
model are essentially zero, and the minimum and maximum median

values of their estimators p; are also zero.

7. Concluding Remarks

Bai et al. (2025) proposed two KOO methods for selection of variables in

large-dimensional regression. One is based on KOO statistics which are test
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Table 3: Selection probabilities under (i) and (ii).

Dist. n P k 0, 0, 05 0, 0; ifrgink Z‘max
Normal | 100 20 20 pj || 0.24 0.70 0.89 0.96 1.00 0.00 0.01
med || 0.22 0.66 0.86 0.92 0.97 0.00 0.00

100 20 40 p; || 0.12 0.27 0.58 0.98 0.91 0.00 0.01
med || 0.06 0.23 0.55 0.93 0.87 0.00 0.00

100 40 20 p; || 0.12 0.38 0.60 0.92 0.99 0.00 0.00
med || 0.07 0.34 0.57 0.87 0.96 0.00 0.00

100 40 40 p; || 0.08 0.10 0.28 0.52 0.90 0.00 0.00
med || 0.02 0.01 0.18 0.45 0.81 0.00 0.00

500 100 100 p; || 0.96 0.99 1.00 1.00 1.00 0.00 0.00
med || 0.94 0.97 0.99 0.99 1.00 0.00 0.00

500 100 200 p; || 0.50 0.45 0.81 0.52 0.90 0.00 0.00
med || 0.48 0.43 0.78 0.50 0.87 0.00 0.00

500 200 100 p; || 0.71 0.86 0.97 0.99 0.99 0.00 0.00
med || 0.68 0.83 0.96 0.97 0.98 0.00 0.00

500 200 200 p; || 0.05 0.08 0.08 0.27 0.55 0.00 0.00
med || 0.02 0.04 0.04 0.24 0.51 0.00 0.00

Uniform | 100 20 20 p; || 0.35 0.75 0.86 0.98 1.00 0.00 0.00
med || 0.33 0.72 0.82 0.95 0.97 0.00 0.00

100 20 40 p; || 0.19 0.31 0.65 0.88 1.00 0.00 0.01
med || 0.13 0.27 0.62 0.83 0.96 0.00 0.00

100 40 20 p; || 0.18 0.64 0.82 0.96 1.00 0.00 0.00
med || 0.13 0.60 0.78 0.92 0.97 0.00 0.00

100 40 40 p; || 0.08 0.23 0.20 0.67 0.58 0.00 0.00
med || 0.02 0.17 0.11 0.61 0.52 0.00 0.00

500 100 100 p; | 0.96 0.98 1.00 1.00 1.00 0.00 0.00
med || 0.94 0.96 0.99 0.99 1.00 0.00 0.00

500 100 200 p; || 0.30 0.63 0.61 0.93 0.88 0.00 0.00
med || 0.29 0.61 0.60 0.91 0.86 0.00 0.00

500 200 100 p; || 0.88 0.97 0.95 1.00 1.00 0.00 0.00
med || 0.88 0.94 0.92 0.99 0.99 0.00 0.00

500 200 200 p; || 0.13 0.08 0.23 0.30 0.65 0.00 0.00
med || 0.10 0.04 0.19 0.25 0.64 0.00 0.00
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Table 4: Selection probabilities under (iii) and (iv).

Dist. n P k 0, 0, 03 0, 0; min max

i=6,...k  i=6,...,

Binomial | 100 20 20 p;j | 0.35 0.75 0.86 098 1.00 0.00 0.00
med || 0.33 0.72 082 0.95 097 0.00 0.00
100 20 40 p;j | 0.19 031 0.65 088 1.00 0.00 0.01
med || 0.13 0.27 0.62 0.83 0.96  0.00  0.00
100 40 20 p; || 0.18 0.64 0.82 096 1.00 0.00 0.00
med || 0.13 0.60 0.78 0.92 097  0.00  0.00
100 40 40 p; | 0.08 0.23 0.20 0.67 0.58 0.00 0.00
med || 0.02 0.17 0.11 0.61 0.52 0.00  0.00
500 100 100 p;j | 0.96 098 1.00 1.00 1.00  0.00  0.00
med || 094 096 099 0.99 1.00 0.00  0.00
500 100 200 p; | 0.30 0.63 0.61 093 088 0.00  0.00
med || 0.29 0.61 0.60 0.91 0.86 0.00  0.00
500 200 100 p; | 0.88 097 0.95 1.00 1.00 0.00  0.00
med || 0.88 094 092 099 0.99  0.00 0.00
500 200 200 p; || 0.13 0.08 0.23 0.30 0.65 0.00  0.00
med || 0.10 0.04 0.19 0.25 0.64 0.00  0.00

X1y | 100 20 20 p; | 0.31 0.63 0.88 0.98 1.00 0.00  0.00
med || 0.30 0.62 083 094 098 0.00 0.00
100 20 40 p;j | 0.22 034 0.67 086 096  0.00 0.01
med || 0.19 0.27 0.62 0.80 0.90  0.00  0.00
100 40 20 p;j || 0.13 0.64 0.86 096 1.00 0.00 0.00
med || 0.08 0.59 080 0.91 097  0.00  0.00
100 40 40 p; || 0.07 0.17 033 056 0.77  0.00 0.00
med || 0.01 0.08 0.25 0.50 0.69  0.00  0.00
500 100 100 p; | 099 099 1.00 1.00 1.00  0.00  0.00
med || 0.97 098 099 0.99 1.00 0.00  0.00
500 100 200 p;j | 0.49 0.75 0.66 091 089  0.00 0.00
med || 0.47 0.74 0.65 0.86 0.86  0.00  0.00
500 200 100 p; | 0.89 092 098 0.99 098  0.00  0.00
med | 0.86 0.89 096 0.99 096  0.00  0.00
500 200 200 p;j | 0.04 0.17 0.22 042 0.31 0.00  0.00
med || 0.02 0.15 0.19 0.39 0.30 0.00  0.00
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Table 5: Selection probabilities under (v) and (vi).

Dist. n P k 0, 0, 05 0, 0; min max

i=6,...k  i=6,...,

tip | 100 20 20 p;j | 0.39 049 092 098 0.99 0.00 0.01
med || 0.36 047 087 094 097 0.00 0.00
100 20 40 p;j | 0.14 038 0.63 0.75 0.99 0.00 0.01
med || 0.08 0.36 0.60 0.70 0.96  0.00  0.00
100 40 20 p; || 0.17 041 0.74 099 1.00 0.00 0.00
med || 0.12 037 0.68 0.96 098  0.00 0.00
100 40 40 p; | 0.09 0.14 028 037 086  0.00 0.00
med || 0.03 0.07 0.20 0.29 0.78  0.00  0.00
500 100 100 p;j | 0.93 098 099 1.00 1.00 0.00 0.00
med || 0.90 096 098 0.99 1.00 0.00  0.00
500 100 200 p;j | 0.29 0.69 0.78 090 0.77  0.00 0.00
med || 0.25 0.68 0.76 0.87 0.75 0.00  0.00
500 200 100 p; | 0.80 0.84 098 1.00 099  0.00  0.00
med || 0.76 082 097 0.99 098  0.00  0.00
500 200 200 p;j | 0.05 0.10 0.22 0.33 0.62 0.00  0.00
med || 0.02 0.07 0.19 0.30 0.59  0.00  0.00

Poisson | 100 20 20 p; | 0.25 0.65 090 0.98 1.00 0.00  0.00
med || 0.20 0.63 0.85 0.93 098  0.00 0.00
100 20 40 p;j | 0.19 032 054 079 097 0.00 0.01
med || 0.12 0.28 0.52 0.75 091 0.00  0.00
100 40 20 p; || 0.17 039 0.86 099 1.00 0.00 0.00
med || 0.11 035 0.79 094 096 0.00  0.00
100 40 40 p; | 0.08 0.21 048 0.73 0.75 0.00  0.00
med || 0.01 0.10 043 0.65 0.68 0.00  0.00
500 100 100 p;j | 0.99 094 1.00 099 1.00 0.00 0.00
med || 0.98 091 099 0.99 1.00 0.00  0.00
500 100 200 p;j || 0.43 0.71 0.63 0.76 083  0.00 0.00
med | 0.43 0.68 0.61 0.74 0.81 0.00  0.00
500 200 100 p; | 0.82 092 098 0.99 1.00 0.00  0.00
med || 0.81 088 097 098 0.99 0.00 0.00
500 200 200 p;j || 0.04 0.10 0.20 0.36 0.27  0.00  0.00
med || 0.01 0.07 0.18 0.36 0.22 0.00  0.00
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Table 6: Selection probabilities under (vii) and (viii).

Dist. n P k 0, 0, 03 0, 0; z‘*HGlink imax
Exp. | 100 20 20 p; || 0.51 0.71 0.88 1.00 1.00 0.00 0.00
med || 0.49 0.67 0.84 0.98 0.99 0.00 0.00

100 20 40 p; | 0.30 0.38 0.50 0.92 0.97 0.00 0.01
med || 0.26 0.33 0.47 0.86 0.92 0.00 0.00

100 40 20 p;j || 0.20 0.42 0.91 0.98 1.00 0.00 0.00
med || 0.14 0.38 0.83 0.93 0.98 0.00 0.00

100 40 40 p; || 0.05 0.20 0.25 0.72 0.70 0.00 0.00
med || 0.01 0.12 0.18 0.64 0.62 0.00 0.00

500 100 100 pi | 0.99 098 099 1.00 1.00 0.00 0.00
med || 0.98 0.96 0.99 1.00 1.00 0.00 0.00

500 100 200 p; || 0.51 0.59 0.63 0.80 0.75 0.00 0.00
med || 0.50 0.57 0.60 0.78 0.73 0.00 0.00

500 200 100 p; || 0.87 0.86 0.98 0.95 1.00 0.00 0.00
med || 0.85 0.82 0.97 0.92 0.99 0.00 0.00

500 200 200 p;j || 0.05 0.12 0.16 0.29 0.34 0.00 0.00
med || 0.03 0.11 0.12 0.26 0.33 0.00 0.00

X3 | 100 20 20 p; || 0.22 0.65 0.86 0.98 1.00 0.00 0.00
med || 0.18 0.63 0.80 0.94 1.00 0.00 0.00

100 20 40 p; | 0.19 039 0.70 0.75 0.97 0.00 0.01
med || 0.15 0.37 0.66 0.70 0.92 0.00 0.00

100 40 20 p;j || 0.12 0.45 0.80 0.98 0.98 0.00 0.00
med || 0.05 0.42 0.76 0.94 0.93 0.00 0.00

100 40 40 p; || 0.08 0.11 0.36 0.54 0.72 0.00 0.00
med || 0.01 0.04 0.31 0.48 0.64 0.00 0.00

500 100 100 p;j | 0.99 0.99 0.99 1.00 1.00 0.00 0.00
med || 0.98 0.98 0.98 1.00 0.99 0.00 0.00

500 100 200 p; || 0.47 0.67 0.78 0.80 0.90 0.00 0.00
med || 0.46 0.66 0.76 0.77 0.89 0.00 0.00

500 200 100 p;j || 0.70 0.86 0.95 0.99 0.99 0.00 0.00
med || 0.68 0.83 0.93 0.98 0.98 0.00 0.00

500 200 200 p; || 0.18 0.15 0.37 0.44 0.50 0.00 0.00
med || 0.14 0.11 0.36 0.40 0.47 0.00 0.00
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statistics for each of the regression coefficients. However, the method involves
unknown parameters. The other method based on Bootstrap distribution of
KOO statistic. In this paper we propose a modified KOO method for the
variable selection problem. The method is easily computed. The consistency
property is shown, and its property has been confirmed through a Monte
Carlo simulation. In addition, we provide a method to estimate the selection
probabilities of explanatory variables in our proposed KOO method, and its
accuracy has been confirmed through a Monte Carlo simulation. It is left to
compare the present method to the methods under normality due to Fujikoshi
(2022) and Oda and Yanagihara (2020, 2021).
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