数理解析学 A・数理解析基礎講義 A 演習問題 No.4 (2025.4.22 出題)

演習問題は http://www.math.sci.hiroshima-u.ac.jp/~takimoto/R7SuurikaisekiA.html にも置いてあります.

以下の問題は自習用の演習問題ですが、演習問題のいくつかを後日レポート問題に指定したり、期末試験で出題したりするかもしれません.

[29] X を有限次元線形空間とし, e_1, e_2, \ldots, e_k を X の基底とする.すると,任意の $u \in X$ に対して

$$u = c_1 e_1 + c_2 e_2 + \dots + c_k e_k \quad (c_1, c_2, \dots, c_k \in \mathbb{C})$$

と一意的に表すことができる.このとき, $\|u\|_{\infty} = \max_{j=1,\dots,k} |c_j|$ と定義する.

- $(1) \| \cdot \|_{\infty}$ は X 上のノルムであることを示せ.
- $(2)(X, \|\cdot\|_{\infty})$ は Banach 空間であることを示せ¹.
- [30] $f,g \in C_0(\mathbb{R}^N)$ とする. このとき, $f * g \in C_0(\mathbb{R}^N)$ であることを示せ.

(示すべきことは

- 任意の $x \in \mathbb{R}^N$ に対して $(f*g)(x) = \int_{\mathbb{R}^N} f(x-y)g(y)\,dy$ の値が(有限値として)存在すること
- f * g の support が compact であること
- ullet f * g が \mathbb{R}^N 上で連続であること

です. 3番目の主張を証明するには Lebesgue の収束定理を用いると良いです.)

- [31] $1 < p,q < \infty$ は $\frac{1}{p} + \frac{1}{q} = 1$ を満たす定数とする.このとき, $f \in L^p(\mathbb{R}^N)$, $g \in L^q(\mathbb{R}^N)$ ならば $f * g \in C_\infty(\mathbb{R}^N)$ であることを示せ.
- [32] $f,g \in \mathcal{S}(\mathbb{R}^N)$ とする. このとき、 $f*g \in \mathcal{S}(\mathbb{R}^N)$ であることを(Fourier 変換の知識を使わずに直接)示せ.
- [33] $\delta>0$ に対し $h_\delta\in C_0^\infty(\mathbb{R}^N)$ を本日の講義で定義した関数とする. $1\leq p<\infty$ に対して、次を示せ.
 - (1) $f \in L^p(\mathbb{R}^N)$ ならば、 $h_\delta * f \in L^p(\mathbb{R}^N)$ であり $\|h_\delta * f\|_p \leq \|f\|_p$.
 - (2) $f \in L^p(\mathbb{R}^N)$ ならば、 $\|h_\delta * f f\|_p \to 0 \ (\delta \to +0)$.
- [34] $p = \infty$ のときは, [33](1) は真であるが [33](2) は偽であることを示せ.

(裏へ続く)

 $^{^1}$ 勿論, $\mathbb C$ が完備であることは用いて良いです.任意に X の Cauchy 列 $\left(u_n\right)_{n=1}^\infty$ を取って, $u_n=c_{n1}e_1+c_{n2}e_2+\cdots+c_{nk}e_k$ と表したときに,まずは各 $j=1,\ldots,k$ に対して複素数列 $\left(c_{nj}\right)_{n=1}^\infty$ が Cauchy 列であることを示します.

[35] 加法を通常の+, 乗法を convolution を取る演算*で定めると, $L^1(\mathbb{R}^N)$ は可換環をなすことは既に示されている (4/15) の講義および演習問題 [19] を参照) 2 .

では、この環には乗法 * に関する単位元が存在するか? 即ち、

$$\exists e \in L^1(\mathbb{R}^N) \text{ s.t. } \forall f \in L^1(\mathbb{R}^N), \ e * f = f \text{ a.e. } \mathbb{R}^N$$

が成立するか? 真ならば単位元 e を具体的に求め、偽ならばそれを証明せよ.

(ヒント:単位元 e が存在すると仮定しましょう. [33](2) を使うと $||h_{\delta}*e - e||_1 \to 0 \ (\delta \to +0)$ ですが,仮定より $h_{\delta}*e = e*h_{\delta} = h_{\delta}$ a.e. \mathbb{R}^N ですから……)

[36] $1 \le p \le \infty$ とする. このとき, $\mathcal{S}(\mathbb{R}^N) \subset L^p(\mathbb{R}^N)$ を示せ.

 $(u \in \mathcal{S}(\mathbb{R}^N))$ を任意に取ると、 $\mathcal{S}(\mathbb{R}^N)$ の定義より、

「任意の $m \in \mathbb{N}$ に対して,ある R > 0 が存在して $|x| \ge R$ ならば $|x|^m |u(x)| \le 1$ 」 が成立します. あとは, $p = \infty$ と $1 \le p < \infty$ で場合分けをします. $1 \le p < \infty$ のときは $\lceil \alpha > N$ ならば $\int_{|x| \ge R} |x|^{-\alpha} \, dx < \infty$ 」を用いると,m をどう置けば良いかが分かるでしょう.)

 $^{^2}$ 乗法を通常のかけ算で定めてしまうと $L^1(\mathbb{R}^N)$ は乗法で閉じていません.