
. . . . . . . . . . . . . .

Introduction

. . . . . . . . . . .

Riemann surfaces

. . . . . . . . . . .

Applications to 4-manifolds

.

.

. ..

.

.

Low dimensional topology and complex

analysis (1)

Yukio Matsumoto

Gakushuin University

Hiroshima University, January 11, 2011



. . . . . . . . . . . . . .

Introduction

. . . . . . . . . . .

Riemann surfaces

. . . . . . . . . . .

Applications to 4-manifolds

contents

.

. .
1 Introduction

Some History

Branched coverings

.

. .

2 Riemann surfaces

Riemann surfaces

Dynamics of mapping classes

.

. .

3 Applications to 4-manifolds

Applications to 4-manifolds

Monodromy



. . . . . . . . . . . . . .

Introduction

. . . . . . . . . . .

Riemann surfaces

. . . . . . . . . . .

Applications to 4-manifolds

Some History

This lecture

will not be very ambitious (if the title may sound so),

but will only show, by some examples, the close

relationship between the two disciplines,

and present my recent results on moduli space of

Riemann surfaces.
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Some History

The first result of modern knot thoery

In 1908, H. Tietze (1884 – 1964) published the first result in

modern knot theory:

.

Tietze (Monatshefte für Math. und Physik, 1908, §18.)

.

.

.

. ..

. .

The knot group of a trefoil is generated by s, t and has a

relation sts = tst. This group is not infinite cyclic, thus

trefoil is knotted.

No hint of the proof is given.
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Some History

M. Epple pointed out · · · (Historia Mathematica, 1995.)

A closer reading of Tietze’s paper indicates W. Wirtinger’s

influence:

Wilhelm Wirtinger (1865 – 1945, Austria. Tietze’s advisor)

gave a talk on “Branching about functions of two

variables”in 1905.

He did not publish this talk, but Epple claims that the

reconstruction is possible from several available documents.
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Some History

Wirtinger’s work (according to Epple)

Wirtinger (and his contemporaries) viewed algebraic

functions of two variables as branched coverings of C2:

{(x, y, z) ∈ C3 | f(x, y, z) = 0} p→ C2, (x, y, z) 7→ (x, y).

Wirtinger claims : Local monodromy group of the covering

of a neighbourfood of a singular point (x0, y0) characterizes

the branch point (topologically).
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Some History

Wirtinger’s example

Algebraic function z of two variables (x, y):

z3 + 3xz + 2y = 0.

The equation of the branching curve C:

x3 + y2 = 0.

Wirtinger saw that the intersection C ∩S3 was a trefoil knot!
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Some History

Algebraic function as branched covering
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Some History

Wirtinger cut the covering into three 1-connected sheets.

r, s, t: sheet permutaions. He found the relation

1 = rsr`1t`1 = sts`1r`1 = trt`1s`1.
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Some History

It is immediately seen

by substituting r = sts`1 in other relations, that

sts = tst,

which Tietze wrote in his 1908 paper without any proof.
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Some History

Epple’s viewpoint

It is evident which has the priority of computation of the

(monodromy or knot) group.

But Epple claims that Tietze’s papar is a striking example of

“context-elimination”,i.e.

Wirtinger worked in the context of algebraic function

theory.

Tietze initiated modern knot theory by having asked the

right (properly knot theoretical) questions without

specifying the context.
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Some History

He concludes: p.396.

Knot theory was neither an invention out of thin air nor an

application of general topological notions to a particular

problem.

It emerged as part of a general process of differentiation out

of the theory of algebraic functions.

Another context was the physical one (from which Tait had

drived his justification for tabulating knots).
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Some History

Incidentally · · ·

Epple’s observation (on p.386) on Wirtinger’s and Artin’s

work:

From the sources, it is not quite clear whether Wirtinger

was fully aware of the fact that he had actually

developed · · · a presentation of the fundamental group

of arbitrary knot complement.

The method became generally known under Wirtinger’s

name when Artin described it in his widely read article

on the braid group (1925).



. . . . . . . . . . . . . .

Introduction

. . . . . . . . . . .

Riemann surfaces

. . . . . . . . . . .

Applications to 4-manifolds

Some History

Epple’s observation (bis)

Witinger’s investigation · · · also contained the first

example of a knotted surface in a manifold of four real

dimension. (i.e. the complex branch curve in C2.)

This is exactly the position of the complex branch curve

in the complex plane · · · when looked at from the point

of view of real manifolds.

It is evident that Artin had this example in mind when

he inaugulated the study of knotted surfaces in his short

paper (1925).
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Branched coverings

Branched coverings date back to Riemann (1).

.

Riemann wrote

.

.

.

. ..

.

.

In a region of the plane where there are two or more

different prolongations of the function, the surface will have

two or more layers; it will be composed of superimposed

sheets, one sheet for each branch.

(Collected Papers, p.81, The Theory of Abelian Functions,

translated into English by Roger Baker et al. 2004. Kndrick

Press, USA)
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Branched coverings

Branched covering dates back to Riemann (2).

.

Riemann wrote (bis)

.

.

.

. ..

.

.

Around a branch point one sheet of the surface continues

into the next, and in the neighborhood of the branch point

the surface may be considered as a helicoidal surface whose

axis goes through the point perpendicular to the (x, y) plane

and whose pitch is infinitely small.

(Collected Papers, p.81)

Riemann surfaces were born as branched coverings.
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Riemann surfaces

Riemann surfaces

Important in the theory of algebraic functions,

· · · · · · in the second half of 19C.

Topological classification (by g)

· · · · · · in the second half of the 19C.

Introduction of the Poincaré metric

Conformal structures on Riemann surfaces

· · · · · · in the 20C. (O. Teichmüller, L. Ahlfors,

L. Bers, · · · )
Study on self-homeomorphisms

· · · · · · in the 20C. (M. Dehn, J. Nielsen, J. Birman,

W. Thurston, · · · )
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Riemann surfaces

Mapping class group

Σg: closed oriented surface of genus g.

.

Definition.

.

.

.

. ..

. .

The mapping class group Γg

= {f : Σg → Σg | orientation pres. homeom.}/isotopy.

Γ0 = {1}, Γ1
∼= SL2(Z).

Γg has a strong connection with “Teichmüller space”.
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Riemann surfaces

Teichmüller space T (Σg)

Tg = T (Σg) classifies all the conformal sructures on Σg

up to isotopy (or equivalently, up to homotopy).
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Riemann surfaces

Teichmüller space (bis)

More precisely:

(S, w): S a Riemann surface, w : S → Σg an orientation

preserving homeomorphism.

(S1, w1) ∼ (S2, w2) : equivalent iff ∃ isotopically (or

equivalently, homotopically) commutative diagram

S1
w1−−−→ Σg

t

y y=

S2 −−−→
w2

Σg

where t : S1 → S2 is a biregular map (a conformal

isomorphism).

Definition. Tg = {(S, w)}/ ∼
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Riemann surfaces

Γg acts on Tg

Assume g = 2. Γg acts on Tg:

For [f ] ∈ Γg and p = [S, w] ∈ Tg, define

[f ]˜[S, w] = [S, f ◦ w]

Tg is a (3g − 3)-dimensional complex bounded domain

(Ahlfors, Bers), and Γg acts holomorphically.

Tg is a metric space (w. “Teichmüller metric”), and Γg

acts isometrically
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Riemann surfaces

Teichmüller space is useful in topology.

Thurston (and Bers) used Tg to classify mapping classes

of Σg (1970–80).

S. Kerckhoff used Tg in his solution of Nielsen’s

realization problem, (1983).
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Riemann surfaces

Types of mapping classes

Let me state the classification theorem in Bers’ formulation:

.

Bers Theorem (Acta Math. 1978)

.

.

.

. ..

. .

A mapping class [f ] ∈ Γg is one of the four types:

.

.

.

1 periodic: ∃n(> 0)s.t.[f ]n = 1.

.

.

.

2 parabolic: [f ] is “reduced ”by C = {C1, . . . , Cr} on Σg,

and its component maps are periodic.

.

.

.

3 hyperbolic: “pseudo-Anosov” in Thurston’s sense.

.

.

.

4 pseudo-hyperbolic: “reducible”but not parabolic.
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Dynamics of mapping classes

Dynamics of a periodic mapping class on T (Σg)
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Dynamics of mapping classes

Dynamics of a parabolic mapping class on T (Σg)
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Dynamics of mapping classes

Dynamics of a hyperbolic mapping class on T (Σg)
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Dynamics of mapping classes

Pseudo-periodic maps

For later use, we would like to define

.

Definition.

.

.

.

. ..

.

.

[f ] : pseudo-periodic ⇐⇒

[f ] : periodic, or

[f ] : parabolic
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Applications to 4-manifolds

Applications to 4-manifolds

Topology of Riemann surfaces is now well understood.

But (smooth) topology of 4-manifolds is still mysterious.
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Applications to 4-manifolds

Decomposing 4-manifolds into a collection of Riemann surfaces

Lefschetz pencil (in 1920’s), M : Algebraic surface in CP n.

Axis L: (n − 2)-subspace, and “pages”: (n − 1)-subspaces

parametrized by CP 1 (∼= S2).
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Applications to 4-manifolds

Blow up the base points to get a Lefschetz fibration over CP 1
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Monodromy

Moving a fixed smooth fiber F0(∼= Σg) along a loop l in the

base space B (= CP 1 or more generally, a Riemann

surface), we get a self-homeomorphism of Σg

f : Σg → Σg (topological monodromy along l).
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Monodromy representation

Given a Lefschetz fibration ϕ : M → B, we get a

homomorphism (called monodromy representation)

ρ : π1(B − {b1, . . . , bn}, b0) → Γg

[l] 7→ [f ]

where g is the genus of a general fiber, {b1, . . . , bn} is the

set of critical values, and b0 is a base point.
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C1-isomorphism of Lefschetz fibrations

.

Definition

.

.

.

. ..

.

.

Lefschetz fibrations ϕ : M → B and ϕ0 : M 0 → B0 of the

same fiber genus g are C1-isomorphic i.e.,the following

diagram commutes

M
9C1-diffeom.−−−−−−−−−−→ M 0

’

y y’0

B −−−−−−−−−−→
9C1-diffeom.

B0,
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Monodromy

Equivalence of monodromy representations

.

Definition

.

.

.

. ..

.

.

Two monodromy representations ρ and ρ0 are equivalent if

there is an orientation preserving homeomorphism

h : (B, {b1, . . . , bn}, b0) → (B0, {b0
1, . . . , b0

n}, b0
0)

s.t. the following diagram commutes:

π1(B − {b1, . . . , bn}, b0)
−−−→ Γg

h˜

y yinner auto.

π1(B0 − {b0
1, . . . , b0

n}, b0
0) −−−→

0
Γg
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Monodromy

Monodromy representation classifies Lefschetz fibrations !

.

Theorem (A. Kas, 1985. M. 1995)

.

.

.

. ..

.

.

Lefschetz fibrations ϕ : M → B and ϕ0 : M 0 → B0 of the

same fiber genus g are C1-isomorphic iff their monodromy

representations are equivalent.
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Actual enumeration of Lefschetz fibrations

At present only successful is the case where g = 1
(“Kodaira’s elliptic surfaces without multiple fibers”).

.

Theorem (Kas, Moishezon, 1977, M. 1986)

.

.

.

. ..

.

.

Two Lefschetz fibrations of fiber genus 1, M and M 0 , are

C1- isomorphic iff χ(M) = χ(M 0) and χ(B) = χ(B0).

This was proved by a certain combinatorial group theoretic

argument.

Recently Kamada’s chart theory gives a much simpler proof

(Kamada, M., Matumoto, Waki 2005)



. . . . . . . . . . . . . .

Introduction

. . . . . . . . . . .

Riemann surfaces

. . . . . . . . . . .

Applications to 4-manifolds

Monodromy

I would like to finish here for today.

Tomorrow, I would like to talk about

More about Lefschetz fibrations

Orbifolds

Moduli space of Riemann surfaces

Compactification

Orbifold structure of the compactified moduli space, etc.
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Thank you!


	Introduction
	Some History
	Branched coverings

	Riemann surfaces
	Riemann surfaces
	Dynamics of mapping classes

	Applications to 4-manifolds
	Applications to 4-manifolds
	Monodromy


