Low dimensional topology and complex analysis (2)

Yukio Matsumoto

Gakushuin University

Hiroshima University, January 12, 2011

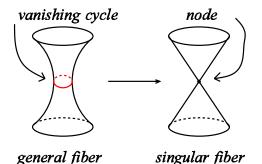
contents

- More about Lefschetz fibrations
 - More about Lefschetz fibrations
- 2 holomorphic fibration
 - holomorphic fibration
- 3 universal degenerating family
 - universal degenerating family

Structure o f a Lefschtz type singular fiber

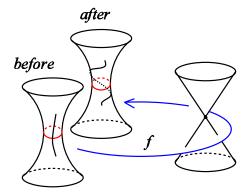
Node (ordinary double point)

$$(z_1, z_2) \mapsto z_1^2 + z_2^2 = (z_1 + \sqrt{-1}z_2)(z_1 - \sqrt{-1}z_2)$$



Dehn twist

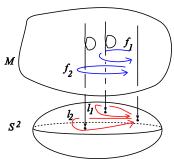
Monodromy around a Lefschetz type singular fiber is a (right handed = negative) Dehn twist about the vanishing cycle:



Application (a relation in Γ_g produces a 4-manifold)

A relation of Dehn twists gives a Lefschetz fibration over S^2 :

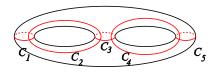
 C_1,C_2,\ldots,C_r simple closed curves in Σ_g . If $D(C_1)D(C_2)\cdots D(C_r)=1$ in Γ_g , then we get a Lefschetz fibration:



$$f_1 = D(C_1), \ f_2 = D(C_2), \ \cdots, \ \ \ \mathsf{NB} \colon \ l_1 l_2 \cdots l_r \simeq 0 \ \mathsf{in} \ S^2.$$

Examples in g=2

Now let C_1, C_2, \ldots, C_5 denote standard curves on Σ_2 :



Denote $\zeta_i = D(C_i), i = 1, 2, \dots, 5$ (negative Dehn twists.) Well known relations;

- (A) $(\zeta_1\zeta_2\zeta_3\zeta_4\zeta_5^2\zeta_4\zeta_3\zeta_2\zeta_1)^2 = 1$ gives $\mathbb{C}P^2\#13\overline{\mathbb{C}P^2}$,
- (B) $(\zeta_1\zeta_2\zeta_3\zeta_4\zeta_5)^6=1$ gives $K3\#2\overline{\mathbb{C}P^2}$.
- (C) $(\zeta_1\zeta_2\zeta_3\zeta_4)^{10}=1$ and $(\zeta_1\zeta_2\zeta_3\zeta_4\zeta_5^2\zeta_4\zeta_3\zeta_2\zeta_1)^4=1$

The two relations in (C) give homeomorphic but non-diffeomorphic 4-manifolds. (T. Fuller, 1996)

Siebert-Tian Conjecture, 1990's

If a Lefschetz fibration of genus 2 over S^2 has only non-separating vanishing cycles, then it is a fiber connected sum of copies of the above three examples (A), (B), (C). (A higher genus version exists.)

Unsolved (until now).

Is Kamada's Chart theory useful?

Close relationship with symplectic 4-manifolds (1)

Definition

A 4-manifold with a 2-form ω satisfying

$$\bullet$$
 $\omega^2 \neq 0$

$$\bullet$$
 $d\omega = 0$

is called a symplectic 4-manifold.

Example: An algebraic surface is a symplectic 4-manifold.

Close relationship with symplectic 4-manifolds (2)

In 1990's,

S. K. Donaldson proved : A symplectic 4-manifold admits a Lefschetz pencil.

and conversely

R. E. Gompf proved: A Lefschetz fibration is a symplectic 4-manifold.

Therefore

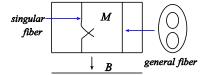
Symplectic 4-manifols = **Lefschetz fibrations**

Generalization of L.F.'s to holomorphic fibrations

M: Complex surface, B: Riemann surface,

A holomorphic map $\varphi:M\to B$ is called a holomorphic fibration (or degenerating family of Riemann surfaces) iff φ is a proper surjective holomorphic map.

General fiber of $\varphi:M\to B$ is a Riemann surface ($\cong\Sigma_g$), \exists some singular fibers.



Classification of singular fibers

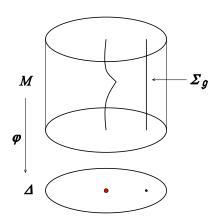
To study topology of such holomorphic fibrations, we have to start with the local theory, i.e., topological classification of singular fibers:

Let Δ denote the unit disk in \mathbb{C} ;

$$\Delta = \{z \in \mathbb{C} \mid |z| < 1\}$$

holomorphic fibration

Degenerating family of Riemann surfaces over Δ (1)



Over the center, we admit any type of singular fiber.

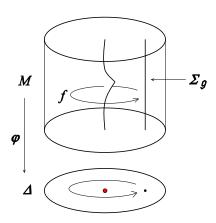
Degenerating families over Δ (2)

Definition

Two degenerating families $(M_1, \varphi_1, \Delta_1)$ and $(M_2, \varphi_2, \Delta_2)$ are Toplogically equivalent (denoted by $\stackrel{top}{\cong}$), if \exists orientaion preserving homeomorphisms $H: M_1 \to M_2$ and $h: \Delta_1 \to \Delta_2$ s.t.

We assume that (M, φ, Δ) is relatively minimal, i.e. fibers do not contain any (-1)-spheres.

Degenerating families over Δ (3)



Topological equivalence class $[M, \varphi, \Delta]$ \mapsto topological monodromy $f: \Sigma_g \to \Sigma_g$

Degenerating families over Δ (4)

In the case of Lefschetz type singular fibers, the topological monodromy was a (-1)-Dehn twist about the vanishing cycle.

In general case, topological monodromy belongs to pseudo-periodic maps defined yesterday:

$$[f]:$$
 pseudo-periodic $\Longleftrightarrow egin{cases} [f]:$ periodic, or $[f]:$ parabolic.

A parabolic map [f] maight have a fractional Dehn twist about a reducing curve C. [f] is called of negative twist if this twist is negative (with "negative screw numbers" in Nielsen's terminology).

Degenerating families over Δ (5)

Fact: Topological monodromy f is a pseudo-periodic map of negative twist. (Long history: A'Campo, Lẽ, Michel, Weber in Milnor fiberings, and Imayoshi, Shiga-Tanigawa, Earle-Sipe in families of Riemann surfaces)

Theorem (M. and Montesinos 1991/92), Bull. AMS. '94

$$\{(M, \varphi, \Delta)\}/\stackrel{top}{\cong} \quad bijection$$

 $\{ pseudo-periodic \ mapping \ classes \ of \ {\color{red} negative} \ twists \}/conj.$

$$([M, \varphi, \Delta] \mapsto f : \mathsf{topological} \mathsf{ monodromy})$$

An interesting point would be

$$\begin{split} \{(M,\varphi,\Delta)\}/\stackrel{top}{\cong} \\ &\stackrel{\longleftrightarrow}{bijection} \\ \{\text{pseudo-per.mappings of negative twists}\}/\text{conj.} \end{split}$$

Left-hand side · · · · · Objects in comlex analysis Right-hand side · · · · · · Purely topological objects.

holomorphic fibration

Global theory of holomorphic fibrations?

This is not yet successful.

We would like to change the subject here, and will consider the problem of constructing the "universal" degenerating family.

Motivation

Riemann surfaces

- topologically classified by genus g
- complex analytically classified by the "moduli space".

Degenerate Riemann surfaces

- topologically classified by pseuod-periodic maps
- complex analytically calssified by the "compactified moduli space" ("Deligne-Mumford compactification").

But the last poit seems not yet completely clarified. Our theorem ("hopefully" proved in 2010) gives an exact formulation of this correspondence in terms of "orbifolds".

universal degenerating family

Recall : Teichmüller space $T(\Sigma_g)$

 $T_g = T(\Sigma_g)$ classifies all the conformal sructures (or complex analytic structures) on Σ_g up to isotopy (or equivalently, up to homotopy).

Teichmüller space (bis)

More precisely:

 $(S,w)\colon S$ a Riemann surface, $w:S\to \Sigma_g$ an orientation preserving homeomorphism.

 $(S_1,w_1)\sim (S_2,w_2)$: equivalent iff \exists isotopically (or equivalently, homotopically) commutative diagram

$$egin{array}{ccc} S_1 & \stackrel{w_1}{\longrightarrow} & \Sigma_g \ t & & \downarrow = \ S_2 & \stackrel{w_2}{\longrightarrow} & \Sigma_g \end{array}$$

where $t: S_1 \to S_2$ is a biregular map (a conformal isomorphism).

Definition.
$$T_g = T(\Sigma_g) = \{(S,w)\}/\sim$$

T_g classifies "marked" Riemann surfaces

(S,w): a "marked" Riemann surface.

S: a Riemann surface,

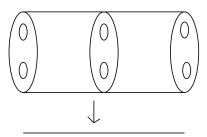
 $w: S \to \Sigma_g$: a "marking" which topologically identifies S with a fixed topological surface Σ_g .

Bers' tautological family of marked Riemann surfaces

Bers constructed a family of Riemann surfaces (Acta Math. 1973)

$$V(\Sigma_g) o T(\Sigma_g).$$

Over a point $[S,w]\in T_g$, the Riemann surface S is situated.



Recall: Γ_g acts on T_g

Assume $g \geq 2$. Γ_g acts on T_g :

For $[f] \in \Gamma_g$ and $p = [S, w] \in T_g$, define

$$[f]_*[S,w]=[S,f\circ w]$$

- T_g is a (3g-3)-dimensional complex bounded domain (Ahlfors, Bers), and Γ_g acts holomorphically.
- ullet T_g is a metric space (w. "Teichmüller metric"), and Γ_g acts isometrically
- The action of Γ_q on T_q is properly discontinuous.

Moduli space $M(\Sigma_g)$

Moduli space of genus g is defined as :

$$M_g = M(\Sigma_g) = T_g/\Gamma_g.$$

Since the action od Γ_g is properly discontinuous, the moduli space $M_g(=T_g/\Gamma_g)$ is a normal complex space.

Γ_g acts on the fiber space $V(\Sigma_g) o T(\Sigma_g)$

 $\Gamma_g=\Gamma(\Sigma_g)$ acts on $V(\Sigma_g)\to T(\Sigma_g)$ in a fiber preserving manner, (Bers, Acta Math,130, 1973).

By taking the quotient, we get Bers' fiber space over the moduli space $Y(\Sigma_g) o M(\Sigma_g)$

$$\Gamma_g$$
 acts on $V(\Sigma_g) o T(\Sigma_g)$ $\qquad \qquad \downarrow$ quotient $/\Gamma_g$ $\qquad \qquad Y(\Sigma_g)=V(\Sigma_g)/\Gamma_g o M(\Sigma_g)=T(\Sigma_g)/\Gamma_g$

M_g parametrizes all Riemann surfaces without marking

- ullet Each Riemann surface S corresponds to a unique point $[S] \in M_g.$
- ullet Over the point $[S]\in M_g$, the Riemann surface S is situated (as a fiber of $Y(\Sigma_g) o M_g$.)
- If S has a non-trivial symmetry (i.e., $\operatorname{Aut}(S) \neq \{1\}$), then the fiber is $S/\operatorname{Aut}(S)$.

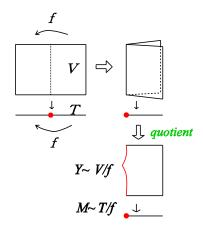
This last degenerate fiber is a singular fiber with periodic monodromy.

Idea

Recall that a singular fiber over Δ was classified by a pseudo-periodic map.

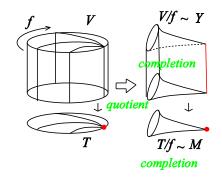
- If the monodromy is periodic, it appears as an inner singular fiber of $Y(\Sigma_g) o M_g$.
- If the monodromy is parabolic, it will appear as an outer singular fiber on the "boundary" of the "compactified" fiber space $\overline{Y(\Sigma_g)} \to \overline{M(\Sigma_g)}$.

Conceptual explanation: periodic case



singular fiber \longleftrightarrow periodic monodromy f

Conceptual explanation: parabolic case



singular fiber \longleftrightarrow parabolic monodromy f