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Structure o0 a Lefschtz type singular fiber

Node (ordinary double point)
(z1,22) — zf + zg = (21 4+ vV —12z2)(21 — V—122)

vanishing cycle node

T

general fiber singular fiber
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Dehn twist

Monodromy around a Lefschetz type singular fiber is a (right
handed = negative) Dehn twist about the vanishing cycle:

after
D

before v >
)

L=
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Application (a relation in I'; produces a 4-manifold)

A relation of Dehn twists gives a Lefschetz fibration over S2:

C1,Cs2,...,C, simple closed curves in 3.
If D(C1)D(C32)---D(C;) =1 inTg, then we get a
Lefschetz fibration:

.fl = D(Cl), f2 = D(Cz), ---, NB: l1l2 .. °lr ~0in 52.
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More about Lefschetz fibrations

Examples in g = 2

Now let C1,Cs5,...,Cs denote [ standard curves on X,:

Denote ¢; = D(C;),i =1,2,...,5 (negative Dehn twists.)
Well known relations;

(A) (¢1€2¢3€a¢3¢aC5¢2¢1)% = 1 gives CP2#13CP2,

(B) (¢1€2€3¢4aC5)® = 1 gives K3#2CP2.

(C) (€1€2¢3¢4)™ =1 and (¢1¢2¢3¢a¢2Ca3¢2C1)t =1

The two relations in (C) give homeomorphic but
non-diffeomorphic 4-manifolds. (T. Fuller, 1996)
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Siebert-Tian Conjecture, 1990’s

If a Lefschetz fibration of genus 2 over S? has only
non-separating vanishing cycles, then it is a fiber connected
sum of copies of the above three examples (A), (B), (C).
(A higher genus version exists.)

Unsolved (until now).

Is Kamada’s Chart theory useful?
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Close relationship with symplectic 4-manifolds (1)

Definition

A 4-manifold with a 2-form w satisfying
o w2#£0
0o dw=0

is called a symplectic 4-manifold.

Example: An algebraic surface is a symplectic 4-manifold.
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More about Lefschetz fibrations

Close relationship with symplectic 4-manifolds (2)

In 1990’s,

S. K. Donaldson proved : A symplectic 4-manifold admits a
Lefschetz pencil.

and conversely

R. E. Gompf proved: A Lefschetz fibration is a symplectic
4-manifold.

Therefore
Symplectic 4-manifols = Lefschetz fibrations
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Generalization of L.F.’s to holomorphic fibrations

M: Complex surface, B: Riemann surface,

A holomorphic map ¢ : M — B is called a holomorphic
fibration (or degenerating family of Riemann surfaces) iff ¢
is a proper surjective holomorphic map.

General fiber of o : M — B is a Riemann surface (& 3,),
3 some singular fibers.

sing‘m’w M

fiber F( 1

| B general fiber




holomorphic fibration
0®0000000

holomorphic fibration

Classification of singular fibers

To study topology of such holomorphic fibrations, we have to
start with the local theory, i.e., topological classification of
singular fibers:

Let A denote the unit disk in C;

A={zeC||z| <1}
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holomorphic fibration

Degenerating family of Riemann surfaces over A (1)

Over the center, we admit any type of singular fiber.



holomorphic fibration
000®00000

holomorphic fibration

Degenerating families over A (2)

Definition
Two degenerating families (M, ¢1, A1) and (Ma, @2, A3)

top
are Toplogically equivalent (denoted by =), if 3 orientaion

preserving homeomorphisms H : M; — M5 and
h: A]_ — Az S.t.
M]_ L) M2

We assume that (M, ¢, A) is relatively minimal, i.e. fibers
do not contain any (—1)-spheres.
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Degenerating families over A (3)

Topological equivalence class [M, ¢, A]
+— topological monodromy f:3, — 3,



holomorphic fibration
00000®000

holomorphic fibration

Degenerating families over A (4)

In the case of Lefschetz type singular fibers, the topological
monodromy was a (—1)-Dehn twist about the vanishing
cycle.

In general case, topological monodromy belongs to
pseudo-periodic maps defined yesterday:

: periodic, or
[f] : pseudo-periodic <> 1ep
[f] : parabolic.
A parabolic map [f] maight have a fractional Dehn twist
about a reducing curve C. [f] is called of negative twist if
this twist is negative (with “negative screw numbers "in

Nielsen’s terminology).
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Degenerating families over A (5)

Fact: Topological monodromy f is a pseudo-periodic map of

negative twist. (Long history: A’Campo, L&, Michel, Weber
in Milnor fiberings, and Imayoshi, Shiga-Tanigawa, Earle-Sipe
in families of Riemann surfaces )

Theorem (M. and Montesinos 1991/92), Bull. AMS. '94

top +—
{(M,p,A)}/ = bijection

{pseudo-periodic mapping classes of negative twists}/conj.

([M, ¢, A] — f : topological monodromy)
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An interesting point would be

O
{(Mv P A)}/ g
R d
bijection
{pseudo-per.mappings of negative twists}/conj

Objects in comlex analysis
Purely topological objects.

Left-hand side
Right-hand side
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Global theory of holomorphic fibrations ?

This is not yet successful.

We would like to change the subject here,
and will consider the problem of constructing the
“universal” degenerating family.
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Motivation

Riemann surfaces \

o topologically classified by genus g

o complex analytically classified by the “moduli space”.

’Degenerate Riemann surfaces

o topologically classified by pseuod-periodic maps

e complex analytically calssified by the “compactified
moduli space” (“Deligne-Mumford compactification”).

But the last poit seems not yet completely clarified. Our
theorem (“hopefully” proved in 2010) gives an exact
formulation of this correspondence in terms of “orbifolds”.
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Recall : Teichmiiller space T'(X,)

T, = T(X,) classifies all the conformal sructures (or
complex analytic structures) on X, up to isotopy (or
equivalently, up to homotopy).
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Teichmiiller space (bis)

More precisely:

(S,w): S a Riemann surface, w : § — X, an orientation
preserving homeomorphism.

(S1,w1) ~ (S2,w2) : equivalent iff 3 isotopically (or
equivalently, homotopically) commutative diagram

S, 25 3,
T
So T2> pI

where t : S; — S3 is a biregular map (a conformal
isomorphism).

Definition. [T, = T(Z,) = {(S,w)}/ ~
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T, classifies “marked” Riemann surfaces

(S, w) : a “marked” Riemann surface.

S : a Riemann surface,
w: S — X, a “marking” which topologically identifies S

with a fixed topological surface 3.



Universal degenerating family
0000®0000000

universal degenerating family

Bers’ tautological family of marked Riemann surfaces

Bers constructed a family of Riemann surfaces (Acta Math.
1973)
V(Zg) — T(Zg).

Over a point [S, w] € Ty, the Riemann surface S is situated.

0 0 0
0 0 0

\3
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Recall : T'; acts on T,

Assume g 2 2. T’y acts on Tj:

For [f] € Ty and p = [S, w] € T, define
[f1«[S,w] =[S, f o w]

e T, is a (3g — 3)-dimensional complex bounded domain
(Ahlfors, Bers), and I'y acts holomorphically.

e Ty is a metric space (w. “Teichmiiller metric”), and Ty
acts isometrically

@ The action of 'y on T} is properly discontinuous.
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Moduli space M (X,)

Moduli space of genus g is defined as :
My = M(3g) = T,y/Ty.

Since the action od I'y is properly discontinuous, the moduli
space My (= T,/Ty) is a normal complex space.
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I', acts on the fiber space V(X,) — T'(X,)

'y =T'(Xg) acts on V(Xy) — T'(Xg) in a fiber preserving
manner, (Bers, Acta Math,130, 1973).
By taking the quotient, we get Bers’ fiber space over the

moduli space Y (3,) — M(%,)
I'y actson V(X,) — T(X,)
| quotient/T'y
Y(35g) = V(Zg)/Tg > M(3,) =T(Zg)/Ty



Universal degenerating family
000000008000

universal degenerating family

M, parametrizes all Riemann surfaces marking

o Each Riemann surface S corresponds to a unique point
[S] € M.

e Over the point [S] € M, the Riemann surface S is
situated (as a fiber of Y (X,) — M,.)

e If S has a non-trivial symmetry (i.e., Aut(S) # {1}),
then the fiber is S/Aut(S).

This last degenerate fiber is a singular fiber with periodic

monodromy.
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Recall that a singular fiber over A was classified by a
pseudo-periodic map.
o If the monodromy is periodic, it appears as an inner
singular fiber of Y (3g) — M.

o If the monodromy is parabolic, it will appear as an outer
singular fiber on the “boundary” of the “compactified ”
fiber space Y (X,) — M (X,).
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Conceptual explanation: periodic case

~ JL quotient

Y~ VIf

M~Tf L

singular fiber —— periodic monodromy f
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Conceptual explanation: parabolic case

%) 14 V/f ~Y
C )}‘I.
L quotient $l
T T/~ M

completion

singular fiber «—— parabolic monodromy f
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