Low dimensional topology and complex analysis (3)

Yukio Matsumoto

Gakushuin University

Hiroshima University, January 12, 2011

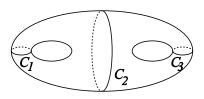
contents

- Some details
 - Pants decomposition
- 2 deformation space
 - deformation space
 - Subdeformation space
- 3 orbifold structure
 - orbifold structure and examples
 - Orbifolds
- Main Theorem
 - Main Theorem

•0000

some details: pants decomposition

(geodesic) pants decomposition: pants $= D^2 \setminus 3$ – disks



$$(C_1, C_2, \cdots, C_{3g-3}) \leftarrow \mathsf{closed} \mathsf{geodesics}$$

00000 Pants decomposition

$$egin{aligned} T(\Sigma_g) & \stackrel{\cong}{\cong} (\mathbb{R}^+)^{3g-3} imes \mathbb{R}^{3g-3} \ & [S] & \mapsto & (l(C_i), heta(C_i)) \ & \swarrow & \nwarrow \end{aligned}$$
 $"geodesic \ length" \qquad "twisting \ angle"$

00000

Basic lemmas (cf. Abikoff's Lecture Notes, LNM 820, pp.95)

Lemma A

 \exists a universal const. M_0 s.t. simple closed geodesics C_1 , C_2 with

$$l(C_1), l(C_2) < M_0 \Longrightarrow C_1 \cap C_2 = \emptyset$$

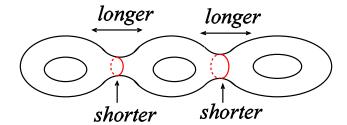
"short simple closed geodesics do not intersect" (figure)

Lemma B

 \exists a universal constant M_1 s.t. every Riemann surface $S \cong \Sigma_q$ has a pants decomposition with curves $\{C_i\}$ of length $l(C_i) < M_1$.

explanation of Lemma A

If the red curves become shorter, transverse curves become longer.



Compactificatin process of $M_a (= T_a(\Sigma_a)/\Gamma_a)$

Given a set of infinite # of points $\{p_i\} \subset T(\Sigma_q)$,

by the action of
$$\Gamma_g$$
, we may assume $\swarrow (3g-3 \; \text{factors})$ $\exists \; \text{infinite} \; \# \; \text{of points} \; \{p_i\} \subset (0,M_1] \times \cdots \times (0,M_1] \times [-K,K] \times \cdots \times [-K,K]$ $\searrow (3g-3 \; \text{factors})$

(w.r.t. a certain pants decomposition; Fenchel-Nielsen **coordinates**

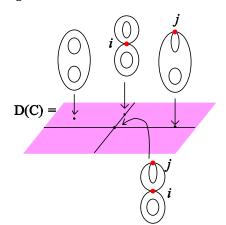
Thus either

- 1. \exists convergent subsequence \rightarrow a point $\in T(\Sigma_a)$ or
- 2. $\exists \{C_i\} \ l(C_i) \rightarrow 0 \text{ (nodes)}$

Bers' deformation space (1)

To describe the second case, Bers introduced

"deformation space" $D(\mathcal{C})$, $\mathcal{C} = \{C_{i_1}, C_{i_2}, \cdots, C_{i_n}\}.$ $\dim_{\mathbb{C}} D(\mathcal{C}) = 3g - 3.$



Deformation space (2)

The difinition of D(C) is similar to that of $T(\Sigma_q)$, but starts with the pair (S, u) with

- S a Riemann surface or a Riemann surface with nodes
- $u: S \to \Sigma_q/\mathcal{C}$: "deformation"
- $(S_1, u_1) \equiv (S_2, u_2)$ iff \exists a homotopy commutative diagram

$$egin{aligned} S_1 & \longrightarrow & \Sigma_g/\mathcal{C} \ & igg| ext{isom.} & igg| = \ S_2 & \stackrel{u_2}{\longrightarrow} & \Sigma_g/\mathcal{C} \ D(\mathcal{C}) = \{(S,u)\}/\equiv. \end{aligned}$$

Deformation space (3)

 $D(\mathcal{C})$ parametrizes Riemann surfaces with nodes.

Let $\Gamma(\mathcal{C}) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ be the free abelian group generated by Dehn twists $au_{C_{i_1}}, au_{C_{i_2}}, \cdots, au_{C_{i_p}}, \quad \mathcal{C} = \{C_{i_1}, C_{i_2}, \cdots, C_{i_p}\}.$

 $D(\mathcal{C})$ is isomorphic to

$$D(\mathcal{C}) = ext{completion of } T(\Sigma_g)/\Gamma(\mathcal{C})$$

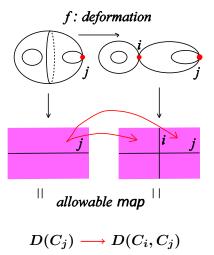
deformation space

Explanation of D(C)

$$D(C)=$$
 j

$$T(\Sigma_g)/\Gamma(\mathcal{C}) =$$
 "off axis" part and $\pi_1($ "off axis" part $)\cong \Gamma(\mathcal{C}).$

Allowable map (Bers)



 $\cdot/\Gamma(C_i)$ "infinite cyclic covering"

Further quotient of $D(\mathcal{C})$

To obtain $M(\Sigma_a)$, we must further take "quotient" of $D(\mathcal{C})$.

But we cannot "see" the action of $\Gamma(\Sigma_q)$ on $D(\mathcal{C})$, because the action of $\Gamma(\Sigma_q)$ is not well-defined on $D(\mathcal{C})$.

$$\underline{\mathsf{Def.}} \ \ N\Gamma(\mathcal{C}) := \mathsf{normalizer} \ \mathsf{of} \ \Gamma(\mathcal{C}) \ \mathsf{in} \ \Gamma(\Sigma_g)$$

$$W(\mathcal{C}) := N\Gamma(\mathcal{C})/\Gamma(\mathcal{C})$$

 $W(\mathcal{C})$ acts on $D(\mathcal{C})$ biholomorphically.

 $T(\mathcal{C}) =$ Teichmüller space of Riemann surfaces with nodes $\leftrightarrow \mathcal{C}$

$$\dim_{\mathbb{C}} T(\mathcal{C}) = 3g - 3 - \#\mathcal{C}$$

Subdeformation space (1)

Let ε be a sequence

$$0 < \varepsilon_1 < \eta_1 < \varepsilon_2 < \eta_2 < \dots < \varepsilon_{3g-3} < \eta_{3g-3} < M_0,$$

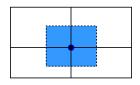
where M_0 is the number of Lemma A.

Let
$$\mathcal{C} = \{C_1, C_2, \dots, C_k\} \subset \Sigma_g \ (k \leqq 3g - 3)$$
, then define

$$D_arepsilon(\mathcal{C})=\{[S,u]\in D(\mathcal{C})\mid l(\hat{C}_i)\eta_k\}$$

Subdeformation space (2)

$$D_{\varepsilon}(\mathcal{C}) = \epsilon$$
 – neighborhood of $T(\mathcal{C})$ in $D(\mathcal{C})$.



Action of $W(\mathcal{C})$ preserves $D_{\varepsilon}(\mathcal{C})$. If f is parabolic, reduced by C, then [f] ($\in W(C)$) acts on $D_{\varepsilon}(\mathcal{C})$ periodically.

orbifold structure

We can construct the compactificatin $\overline{M_q}$ as an orbifold.

Folding charts:

$$\left\{egin{array}{ll} (T(\Sigma_g),\Gamma(\Sigma_g)) & ext{ and } \ (D_arepsilon(\mathcal{C}),W(\mathcal{C})) \end{array}
ight.$$

Type 1 Singular fibers over $T(\Sigma_q)/\Gamma(\Sigma_q)$ have periodic monodromy.

Type 2 ∃ family of Riemann surfaces with nodes on $D_{\varepsilon}(\mathcal{C})$ (cf. I. Kra, 1990),

but on $D_{\varepsilon}(\mathcal{C})/W(\mathcal{C})$, we have singular fibers with pseudo-periodic monodromy.

Orbifolds

orbifold structure

000000000

Orbifolds were introduced by I. Satake ("V-manifolds" 1956), and W. Thurston (ca. 1977). See also F. Bonahon and L. Siebenmann (1985).

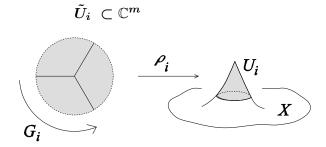
A (complex) orbifold X is a Hausdorff space covered by an atlas of folding charts.

```
\{(	ilde{U}_i,G_i,
ho_i,U_i)\}_{i\in I}: \quad 	ilde{U}_i\subset \mathbb{C}^m ,
                  G_i a finite group acting on U_i,
                  \rho_i: \tilde{U}_i \to \tilde{U}_i/G_i = U_i \subset X, quotient map
```

Folding chart $(\tilde{U}_i, G_i, \rho_i, U_i)$

orbifold structure

000000000



An orbifold is a locally uniformizable space (hence a normal complex analytic space).

A typical example

M: a complex manifold

G: a discrete group acting on M holomorphically and properly discontinuously

M/G: has a structure of an orbifold

Orbifold map (locally uniformizable map)

orbifold structure

0000000000

X, Y: orbifolds of possibly different dimensions.

A holomorphic map $f: X \to Y$ is an orbifold map if for $\forall p \in X$.

 $\exists (\tilde{U}_i, G_i, \rho_i, U_i) \text{ of } X, \text{ and } \exists (\tilde{V}_k, H_k \sigma_k, V_k) \text{ of } Y \text{s.t.}$ $p \in U_i, h(U_i) \subset V_k$, and $h|U_i:U_i \to V_k$ is "lifted" to a holomorphic map $h_{ki}: \tilde{U}_i \to \tilde{V}_k$.

$$egin{array}{ll} ilde{U}_i & \stackrel{h_{ki}}{\longrightarrow} ilde{V}_k \
ho_i igcup & igcup \sigma_k \ U_i & \stackrel{h|U_i}{\longrightarrow} ilde{V}_k \end{array}$$

Generic orbifold map

An orbifold map $h: X \to Y$ is generic, if for each pair of folding charts $(\tilde{U}_i, G_i, \rho_i, U_i)$ of X and $(\tilde{V}_k, H_k, \sigma_k, V_k)$ of Y s.t. $h(U_i) \subset V_k$, we have

$$h(U_i)\cap (V_k-\Sigma(Y))
eq\emptyset,$$

where $\Sigma(Y)$ ="cone point set" of Y.

Lemma 1.

For a generic map, \exists a homomorphism $h_{ki}^{\flat}:G_i\to H_k$ w.r.t.which $h_{ki}:\tilde{U}_i\to \tilde{V}_k$ is an equivariant map.

Fiber spaces over orbifolds

X: a (complex) orbifold,

E: a (not necessarily normal) complex analytic space.

Definition.

 $\varphi: E \to X$ is a fiber space over an orbifold, if

- $\bullet \varphi$: a surjective, proper holomorphic map,
- dim of fibers are constant,
- ullet $\varphi: E \to X$ is covered by an atlas of fibered folding charts $\{(\tilde{\varphi}_i: \tilde{E}_i \to \tilde{U}_i, G_i, \tilde{\rho}_i, \rho_i, U_i)\}_{i \in I}$, where $(\tilde{U}_i, G_i, \rho_i, U_i)$ is a folding chart of X.

Orbifolds

$$ilde{E_i} \stackrel{ ilde{
ho_i}}{\longrightarrow} E_i = arphi^{-1}(U_i)$$

 G_i acts on the fiber space $\tilde{\varphi}_i: \tilde{E}_i \to \tilde{U}_i$.

The quotient is $\varphi_i: E_i \to U_i$.

Orbifold pull-back diagram

Lemma 2.

If $h: X \to Y$ is a generic orbifold map, then any fiber space over Y can be pulled back by h, and we have the orbifold pull-back diagram.

Orbifold fiber space

Definition.

A fiber space over an orbifold $\varphi: E \to X$ is an orbifold fiber space, if E and X are orbifolds, and φ is an orbifold map.

Caution: A pull-back of an orbifold fiber space is not always an orbifold fiber space.

Main Theorem

Theorem

The compactified fiber space

$$\overline{Y(\Sigma_g)} o \overline{M(\Sigma_g)}$$

is an orbifold fiber space.

② For $g \ge 3$, the compactified fiber space is the universal orbifold family (parametrizing virtually all types of degenerate Riemann surfaces).

Ashikaga's precise stable reduction theorem (1)

Preliminaries:

Blowing up a relatively minimal degenerating family $\varphi: M \to \Delta$, we get a normally minimal family

$$\varphi':M'\to\Delta$$

Contracting linear or Y-shaped configurations of spheres in M^\prime , we get an (orbifold) fiber space

$$arphi_\#:M_\# o\Delta.$$

Ashikaga's precise stable reduction theorem (2)

Le N be the pseudo-period of $\varphi:M\to \Delta$, i.e., the smallest N s.t. $[f]^N=$ a product of integral Dehn twists.

Theorem (T. Ashikaga), Comment. Math. Helv., 2010

(1) There exists a 'stable reduction' diagram, where $M^{(N)}$ has 'mild cyclic quotient singularities'.

(2) \exists an action of \mathbb{Z}/N on $M^{(N)}$ s.t. $M^{(N)}/(\mathbb{Z}/N)=M_{\#}$.

$\varphi_{\#}:M_{\#}\to\Delta$ becomes an orbifold fiber space.

By the diagram

we see that

$$(arphi^{(N)}:M^{(N)} o\Delta^{(N)},\mathbb{Z}/N, ilde{
ho},
ho,\Delta)$$

is a fibered folding chart for $\varphi_{\#}: M_{\#} \to \Delta$. Δ becomes an orbifold with the isotropic group \mathbb{Z}/N at the center.

Applying Ashikaga's theorem, we have ...

Given a relatively minimal degenerating family of Riemann surfaces

$$\varphi:M\to B,$$

by blowing up we get a normally minimal family

$$\varphi':M'\to B.$$

By contracting linear or Y-shaped configurations of spheres in M', we get an orbifold fiber space (uniquely determined by $\varphi:M\to B$)

$$\varphi_{\#}:M_{\#}\to B.$$

The universality of $\overline{Y(\Sigma_g)} o \overline{M(\Sigma_g)}$

S is asymmetric \iff $Aut(S) = \{1\}.$

 $\varphi:M\to B$ is almost asymmetric $\iff\exists$ a set of isolated points $Symm\subset B$ s.t. the fiber over $p\in B-Symm$ is asymmetric.

Precise version of (2) of Main Theorem

If $\varphi:M\to B$ is almost asymmetric with $g\geqq 3$, there exists an orbifold pull-back diagram:

$$egin{array}{ccc} M_{\#} & \stackrel{ ext{orbifold pull-back}}{\longrightarrow} & \overline{Y(\Sigma_g)} \ & & & & \downarrow \ B & & & \overline{M(\Sigma_g)} \end{array}$$

Meaning of the universality

Starting from a relatively minimal almost asymmetric family $\varphi: M \to B$, we get the diagram

To prove the main theorem · · ·

We have only to apply Y. Imayoashi's pull-back method of singular fibers (given in his 1981 paper, Ann. Math. Studies, Riemann surfaces and related topics), and interprete it locally on a level of fibered folding charts.

It "automatically" gives an orbifold pull-back diagram by the orbifold formalism.

Main Theorem

Thank You!