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Pants decomposition

some details : pants decomposition

(geodesic) pants decomposition: pants = D? \ 3 — disks

(C1,C2,+++ ,C34_3) «— closed geodesics
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Pants decomposition

Fenchel-Nielsen Coordinates

T(Sy) = (RV)%3 x R399
8] = (UG, 6(Cy)
e N

”geodesic length” "twisting angle”
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Pants decomposition

Basic lemmas (cf. Abikoff’s Lecture Notes, LNM 820, pp.95)

3 a universal const. M s.t. simple closed geodesics C1, C>
with
l(Cl),l(Cz) <My=—>0CiNC;=0

”short simple closed geodesics do not intersect” (figure)

Lemma B

3 a universal constant M; s.t. every Riemann surface

S (£ X4) has a pants decomposition with curves {C;} of
length I(C;) < M;.
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Pants decomposition

explanation of Lemma A

If the red curves become shorter, transverse curves become
longer.

longer longer

T T

shorter shorter
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Compactificatin process of M, (= T,(X,)/I'y)

Given a set of infinite # of points {p;} C T'(X,),

by the action of 'y, we may assume ~ (3g — 3 factors)
3 infinite # of points {p;} C (0, M4] X --- X (0, M4]
X[-K,K] X -+ X [-K, K]
. (3g — 3 factors)
(w.r.t. a certain pants decomposition; Fenchel-Nielsen
coordinates)

Thus either
1. 3 convergent subsequence — a point € T'(3,)

2. 3 {C;} U(C;) — 0 (nodes)
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deformation space

Bers’ deformation space (1)

To describe the second case, Bers introduced
" deformation space” D(C), C={C;,Ci,,---,C;,}.
dimc D(C) = 3g — 3.

L: 8 @
i
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deformation space

Deformation space (2)

The difinition of D(C) is similar to that of T'(3,), but starts
with the pair (S, ) with

@ S a Riemann surface or a Riemann surface with nodes

o u:S — X,;/C: “deformation”

o (S1,u1) = (S2,u2) iff 3 a homotopy commmutative
diagram
Sl —— EQ/C
ul

lisom. =

So 2 x,/C

D) = {(S,u)}/ = .
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deformation space

Deformation space (3)

D(C) parametrizes Riemann surfaces with nodes.

Let T'(C) X ZPZD---DZ be
the free abelian group generated by Dehn twists
TC;i19TCiys """ 3 TCyy C:{C’ilacim"' ’Cip}'

D(C) is isomorphic to

D(C) = completion of T'(X,)/I'(C)
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deformation space

Explanation of D(C)

D(C)=

T(Xy)/T(C) = ”off axis” part
and

71 (" off axis” part) = I'(C).
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deformation space

Allowable map (Bers)

f: deformation
A=
J

e
|

I altowable map "'

D(Cj) — D(C;, Cj)

-/T'(C;) "infinite cyclic covering”
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deformation space

Further quotient of D(C)

To obtain M (X,), we must further take " quotient” of D(C).

But we cannot "see” the action of I'(X,) on D(C), because
the action of I'(X,) is not well-defined on D(C).

Def. NT(C) := normalizer of I'(C) in I'(3y)
W(C) := NT'(C)/T'(C)
W (C) acts on D(C) biholomorphically.

T(C) = Teichmiiller space of Riemann surfaces with nodes <« C

AN

dimc T(C) =39 — 3 — #C
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Subdeformation space

Subdeformation space (1)

Let £ be a sequence
O0<er<Mm<ea< N2 < < ezg—3 < N3g—3 < Mo,

where My is the number of Lemma A.
Let C = {C1,C>,...,Ck} C 34 (k < 3g — 3), then define

DE(C) = {[Svu] € D(C) | l(éz) <ep,t=1,2,...,k,
l(other geodesics in S) > n}



deformation space
oce

Subdeformation space

Subdeformation space (2)

D.(C) = € — neighborhood of T'(C)in D(C).

Action of W (C) preserves D.(C).
If f is parabolic, reduced by C, then [f] (¢ W(C)) acts on
D.(C) periodically.
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orbifold structure and examples

orbifold structure

We can construct the compactificatin M, as an orbifold.

Folding charts:

(T(%g),T'(Xg)) and
(D:(C), W(C))

Type 1 Singular fibers over T'(X,)/T'(Xg4) have periodic
monodromy.

Type 2 3 family of Riemann surfaces with nodes on
D.(C) (cf. I. Kra, 1990),

but on D.(C)/W (C), we have singular fibers with
pseudo-periodic monodromy.
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Orbifolds

Orbifolds

Orbifolds were introduced by |. Satake (“V-manifolds”1956),
and W. Thurston (ca. 1977). See also F. Bonahon and L.
Siebenmann (1985).

A (complex) orbifold X is a Hausdorff space covered by an
atlas of folding charts.
2\
{(U;, G, pis Ui) Yier = U; C C™,
G; a finite group acting on U;,
: U; — U;/G; = Uy (C X), quotient map
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Orbifolds

Folding chart (U;, G;, p;, U;)

G;

An orbifold is a locally uniformizable space (hence a normal
complex analytic space).
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Orbifolds

A typical example

M: a complex manifold

G: a discrete group acting on M holomorphically and
properly discontinuously

M /G: has a structure of an orbifold
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Orbifolds

Orbifold map (locally uniformizable map)

X, Y: orbifolds of possibly different dimensions.

A holomorphic map f : X — Y is an orbifold map

if for Vp € X,

H(ﬁi, G;, Pis Uz) of X, and 3(‘7]{,, Hyoyp, Vk) of Ys.t.

p € U;, h(U;) C Vi, and h|U; : U; — Vj is “lifted”to a
holomorphic map hyg; : l]'i — Vk.

hpi
—

Sx
§r

2
(_
<_

q

kol

S
=

R —
h|U;
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Orbifolds

Generic orbifold map

An orbifold map h : X — Y is generic, if for each pair of
folding charts (l]'i, G, pi,U;) of X and (Vk, Hy, ok, Vi) of
Y s.t. h(U;) C Vi, we have

h(U;) N (Vi — 2(Y)) # 0,

where 3(Y') ="“cone point set” of Y.

For a generic map, 3 a homomorphism h',’m. :G; — Hy,
w.r.t.which hg; : f]i — f/k is an equivariant map.
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Orbifolds

Fiber spaces over orbifolds

X: a (complex) orbifold,
E: a (not necessarily normal) complex analytic space.

@ : E — X is a fiber space over an orbifold, if

@ ¢ : a surjective, proper holomorphic map,
o dim of fibers are constant,

e p: E — X is covered by an atlas of fibered folding
charts {(951, S Ez — ﬁi, Gy Piy Pis Ui)}ie], where
(ffi, G;, pi, U;) is a folding chart of X.
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Orbifolds

Fibered folding chart (3; : E; — U;, G;, ps, pi, U;)

E; 25 By = o Y(U;)

. .

G; acts on the fiber space p; : E; — Uj.

G;

The quotient is ¢; : E; — Uj.
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Orbifolds

Orbifold pull-back diagram

Lemma 2.
If h: X — Y is a generic orbifold map, then any fiber space
over Y can be pulled back by h, and we have the orbifold

pull-back diagram.
LN

o | |¢

X — Y.
h
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Orbifolds

Orbifold fiber space

Definition.
A fiber space over an orbifold ¢ : E — X is an orbifold fiber
space, if E and X are orbifolds, and ¢ is an orbifold map.

Caution: A pull-back of an orbifold fiber space is not always

an orbifold fiber space.
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Main Theorem

Main Theorem

© The compactified fiber space

Y(Zg) - M(Eg)

is an orbifold fiber space.

@ For g = 3, the compactified fiber space is the universal
orbifold family (parametrizing virtually all types of

degenerate Riemann surfaces).
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Main Theorem

Ashikaga’s precise stable reduction theorem (1)

Preliminaries:
Blowing up a relatively minimal degenerating family
w: M — A, we get a normally minimal family

oM — A
Contracting linear or Y-shaped configurations of spheres in
M’, we get an (orbifold ) fiber space

pp + My — A
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Main Theorem

Ashikaga’s precise stable reduction theorem (2)

Le N be the pseudo-period of ¢ : M — A, i.e., the smallest
N s.t. [f] = a product of integral Dehn twists.

Theorem (T. Ashikaga), Comment. Math. Helv., 2010

(1) There exists a ‘stable reduction’diagram, where M (V)

has ‘mild cyclic quotient singularities’.

M®™ 2, g,

(2) 3 an action of Z/N on MM s.t. MN) /(Z/N) = My.
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Main Theorem

P4 : My — A becomes an orbifold fiber space.

By the diagram

MM 2 Ay

CP(N)l l%’#

AN A
p=(z—zN)

we see that
(‘P(N) : MWN) — A(N)a Z/N, p, p, A)

is a fibered folding chart for ¢4 : My — A. A becomes an
orbifold with the isotropic group Z/NN at the center.
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Main Theorem

Applying Ashikaga’s theorem, we have - - -

Given a relatively minimal degenerating family of Riemann
surfaces
p: M — B,

by blowing up we get a normally minimal family
¢ : M — B.

By contracting linear or Y-shaped configurations of spheres
in M’, we get an orbifold fiber space (uniquely determined
by o : M — B)

P4+ My — B.
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Main Theorem

The universality of Y (2,) — M (3X,)

S is asymmetric <= Aut(S) = {1}.

¢ : M — B is almost asymmetric <= 3 a set of isolated
points Symm C B s.t. the fiber over p € B — Symm is
asymmetric.

Precise version of (2) of Main Theorem

If o : M — B is almost asymmetric with g = 3, there exists
an orbifold pull-back diagram:

orbifold pull-back

My Y (3g)
| |
B - M(Zg)
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Main Theorem

Meaning of the universality

Starting from a relatively minimal almost asymmetric family
@ : M — B, we get the diagram

M —— M —— My — Y(X,)

el e

B(TBT>B —)M(Zg)



Main Theorem
0000000e0

Main Theorem

To prove the main theorem - - -

We have only to apply Y. Imayoashi’s pull-back method of
singular fibers (given in his 1981 paper, Ann. Math. Studies,
Riemann surfaces and related topics), and interprete it locally
on a level of fibered folding charts.

It “automatically” gives an orbifold pull-back diagram by the
orbifold formalism.
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Main Theorem

Thank You !
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