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On construction of true solution with logarithm
term and multisummability for some linear
partial differential equations

Hiroshi YAMAZAWA
Department of Language and Culture, Caritas Junior College

In this tale, let us study a construction of a true solution for some linear partial
differential equations by using Theory of Multisummability. For example let us
consider the following linear partial differential equation:

(t,z) e C x C,
M G = Sty () e 0
where

~a; € Cfor j =0,1,2

- a function p(x) is holomorphic in a neighborhood of z = 0 with Rep(0) > 0,
p(0) ¢N={0,1,...}

- a function f(t, x) is holomorphic in a neighborhood of (¢, z) = (0,0)
with f(0,z) =

For this equation, there exists the following formal solution:

(0.2) Zuz )+ ()t + 170N "y ()t (log £)*

k<2

i>1
where {u;(x)}i>1, ¢(2) and {@; k() }k<2:.i>1 are holomorphic functions in a common
neighborhood of z = 0. Moreover (z) is any holomorphic function and a function
@i k(x) depends on ¢(x). For this formal solution U(p), we have that

(0.3) Z_; urgf)) £ 4 ()@ 40 ; @;k(gf)ti(logt)k

i>1

is converges for a sufficiently small ¢.



In the case ag # 0 or a; # 0, we can show that we have a true solution with the
asymptotic expansion U(y) by [01] (Ouchi "95).

At next we consider the case ag = a; = 0 and ay # 0. If we take p(z) = 0, then
we have ¢; ,(z) = 0 for all (4, k), that is, the formal solution U(0) becomes a formal
power series solution.

For this case, we have a true solution by using Theory of Multisummability by
[02] (Ouchi ’02). Many mathematicians study Theory of Summability; W. Balser,
M. Miyake, Y. Sibuya and M. Hibino and so on.

In this talk in the case p(z) Z 0 we study a construction of a true solution with
an asymptotic expansion U(p) by using Theory of Multisummability. In fact, the
formal function

(0.4) ()P 4 @) Z oin(7)t' (logt)"
k<2i
i>1

satisfies the equation

0 2 0\j, 0 \2-j
(0.5) (t5; = p(w)ult,2) = ;ajt(ta) (57) ult, ).
Then as generally we will unfold Theory of Summability for the following equation:

0 0.\j, 0 \a
(0.6) (ta— (2))o(t,z) = Z aj,a(t,a:)(ta) (%) o(t, x)

jHlal<m

where (¢, z) € Cx C? and a;4(t, x) is holomorphic in (¢, z) = (0,0) with a;.(0,z) =
0.
Suppose that it states in detail at the time in a lecture.
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Newton polygon and Gevrey hierarchy in index formulas of

a singular system of ODOps on formal Gevrey spaces

Masatake MIYAKE (Nagoya University)

1. Introduction
We study a system of ordinary differential operators L = L(z, D), which is singular
at z = 0, of the following form,

(1) L(z,D) = 2""'D — A(z), A(2) = (a;(2)) € Mn(R{z}),
where p € N:={0,1,2,3,---}, 2 € C, D = d/dz and MyN(R{z}) denotes the set of N x N

matrices with entries of meromorphic functions at z = 0 which we denote by R{z}.

The purpose of this study is to define the Newton polygon N (L) of the system L(z, D),
and to prove an index formula on formal Gevrey space which is explicitly calculated from
the Newton polygon N(L). This gives an extension of the theory for a single operator by
J.-P. Ramis [Ram] to a system of operators.

List of Notations :

1. C[z], C{z}, C][[z]] : polynomials, convergent series, formal poer series of z over C,

respectively.
2. R[z] := C[2]/Clz] = {f(2)/9(2) ; [(2),9(2) € C[2]}, R{z} := C{z}/C{z}, R[[z]] :=
Cl[z]/C][#]] : : rational functions, meromorphic functions, formal meromorphic func-

tions which may have pole singularities at z = 0, respectively.

3. Mn(R), GLy(R) : N x N-matrices, invertible matrices of entries in a ring R,
respectively.

2. Review of Newton polygon and index formula by J.-P. Ramis
We give a short review of Newton polygon for a single operator and an index formula
on formal Gevrey space proved by J.-P. Ramis [Ram].
Let a single operator P = P(z, D) be given by

2) P = ap(2)(zD)" + Y ai(:)(:D)" 7, a5(2) € Tz}, al2) 0.

We denote by O(a;) = r; € NU {400} the order of zeros at z = 0, and consider the
following correspondence between an operator and a figure,

aj(z)(zD)m’j — Qm—j,r;) ={(z,y) € R*: z<m—j, y> i}

Then the Newton polygon N(P) is defined by
(3) N(P) := Convex — hull {U Q(m — j, rj)} .
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The Newton polygon N(P) is characterized by its vertexes which we denote by
{(m —ji,rj)}ig (k> 0) with

(4) 0=jo<ji < -+ <JrSm, 1j>1j >0 >T

Let the slopes of k + 2 sides of N(P) denoted by {p;}*__, be given by

1=

T, —T;
(5) pi= L p =00 > pp > pr > > oy > 0 =1y
Ji+1 — Ji
We note that the operator P(z, D) is regular singular at z = 0 if and only if £ = 0.
J.-P. Ramis showed that these verteces and slopes characterize the operator P(z, D)
on formal Gevrey space G* (1 < s < 00), where G* C C|[z]] is defined by

def, "

6)  ulz) = Zj;ounz” cgs &b ;unm eC{¢} (1<s<o0),

and G := C[[]].

Then he proved that the mapping P(z, D) : G° — G*® defines a Fredholm operator for
every s € [1,00], and its index x(P; G*) := dimc ker(P; G*) — dimc coker(P; G®) is obtained
as follows: The index x(P;G®) is a right continuous step function on s € [1,+oo] with k
discontinuous points {s;}*=} given by

(7) si=14+1/p;, s =1<s9<8 <+ < 81 < +00=: 5,
and the index is given by

(8) X(P;G%) = —rj, sis1<s<s;, (0<i<k).

When ¢ = k the formula holds for si_1 < s < 53, = +00.

Remark 1. The index formula was proved by Malgrange [Mal] in cases s = 1 and oo,
and by Komatsu [Kom]| for a normalized system of higher order operators in case s = 1.
For a general system of operators, the formula was proved in a joint paper [M-Y] with M.
Yoshino in case s € R for operators with polynomial coefficients, where the determinant
theory of matrices of differential operators on formal Gevrey space was employed. We
note that the restriction of polynomial coefficients is removed for 1 < s < oo by compact
perturbation argument.

3. Statement of Results
We define the order of a meromorphic function as follows. For a non zero formal
meromorphic function a(z) € R[[z]],

9) Ola):=r€Z <= a(z)=2"b(2), b(z) € C[[z]], b(0) # 0.

and if a(z) = 0 we define O(a) := +oo. The order O(A) of a matrix function A(z) is
defined similarly.

Def.3.1 (Volevi¢’s weight) For a matrix function A(z) = (a;;(2)) € My(R[[2]]), let
rij = O(aij) € Z U {400}. Then Volevic’s weight V(A) € QU {+o0} is defined by

. . 1 n
(10) V(A) ;== min min min _Zkzlﬁk’id(’@'

1<n<N 1<ii<-<in<N ¢€Sn, N
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Def.3.2 (Full rank system of irregular singular type) A system L = zP™1D — A(2)
(A(z) € My(R][z]]) is called a full rank system of irregular type if

(11) V(A) <p,  O(det A(z)) = NV(A).

The definition implies for the characteristic polynomial det(A\—A(2)) = AV —Z;.V:l a;(z) AN
that
O(a;) = jV(A), Olany) = NV(A),

but the converse does not hold.

Def.3.3 (Regular singular type) A system L is called of regular singular type if
V(A) > p.

Theorem A (Reduction to a canonical form) A singular system L with A(z) €
Mn(R{z}) is reduced into a canonical form by a formal meromorphic transformation as

follows: 3 P(2) € GLn(R[[2]]), 3N =Ny + -+ Ng + Niwq (NV; >0,k > 0) such that
(12) P~} (2)L(z, D)P(2) = 2" D — Triang(A1(2), - , Ax(2), A11(2))

where Triang(---) denotes a block wise diagonal matriz with j-th diagonal block A;(z),

where
Lj(z, D) := 2""'D — Aj(2),  A;(2) € M, (R[[2]]),

is full rank system of irreqular singular type for 1 < j < k and Lyy1(z, D) is of reqular
singular type with a property

(13) V(A) <V(Ay) <+ <V(Ar) <p < V(Agi1).

Def.3.4 (Newton polygon) For a singular system L with A(z) € My(R{z}), the
Newton polygon N (L) is defined by

(14) N(L) := N(det(L1(z,¢)) + --- + N(det Li(z,¢)) + N(det Ly+1(2,C)).

We note that the Newton polygon N(p) for a polynomial p(z,() = 37", a;(2)(2¢) is
defined similarly with an operator p(z, D).

Theorem B (Index formula) A singular system L with A(z) € Myn(C{z}) defines a
Fredholm operator on G° (1 < s < 00), and the index x(L;G*) is obtained similarly with
a single operator by using the Newton polygon N(L).

Remark 2. In a recent paper with K. Ichinobe [M-I], we defined and characterized the
irregularity of solutions of L(z, D)u(z) = 0 as a maximal rate of exponential growth when
z — 0, which we denoted by p(L). Now we know that this problem is equivalent to
characterize the steepest slope of the Newton polygon N(L). The arguments developed
in the paper play important and powerful roles in this study.
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Fast-slow systemswith codimension 2 fold points

Department of Applied Mathematics and Physics
Kyoto University, Kyoto, 606-8501, Japan
Hayato CHIBA *!

Abstract. The existence of stable periodic orbits and chaotic invariant sets of singularly
perturbed problems of fast-slow type with codimension two fold points is proved by means
of the boundary layer technique and the blow-up method. In particular, the blow-up method
is effectively used for analyzing the flow near the fold points in order to show that an orbit

near the fold pointsis extended along a solution of the first Painlevé equation in the blow-up
space.

1 Introduction
Singularly perturbed ordinary differential equations of the form

Xl = fl(xla"' ’Xn,yl,"' aym’8)7

Xn = fn(le" aXn,YL"' ,Ym,g),

. 1.1
Y1:<9gl(xl,"' axn,y]."" ’Ym,g), ( )

ym = Egm(xl» T, Xn, Y1, Tt Ym, 8),

are called a fast-slow system, where the dot () denotes the derivative with respect to timet,
and where ¢ > O isasmall parameter. The unperturbed system of this system is given by

Xl = fl(Xl,"' ,Xn,yl"" 7ym70)’

Xn = fn(Xl,"‘ ,Xn,yl,‘ ot ,ym, 0)’

. 12
i1 =0, (1.2)

ym = O.
The set of fixed points of the unperturbed systemiscalled acritical manifold, which is defined
by

M = {(Xl"" ,Xn,Yl,"' aYm) € Rn+m| fi(xla"' ,Xn,YL"' ,Ym,o) = Oa I = 1’ ’n} (13)

Typicaly M is an m-dimensional manifold. It is known that the shape and stability of the
critical manifold determine global behavior of the flow of the fast-slow system.

*1 E mail address : chiba@amp.i.kyoto-u.ac.jp



2 Main results

In thistalk, we investigate the 3-dimensional fast-slow system of the form

x=fi(x Y,z ¢),
y=faXxy,ze), (2.1)
z=¢e9(X. Y,z ¢),

with asmall parameter £ > 0. Note that the critical manifold

M={(xY,2 € R®| fi(x,¥,20) = f2(x,¥,20) = 0} (2.2)

gives curves on R® in general. Under some assumptions for the shape and stability of the
critical manifold (see Fig.1), we will prove that there exists a stable periodic orbit if ¢ > 0
is sufficiently small. Further, we will prove that if & increases, a succession of the period-
doubling bifurcations occurs and it induces a chaotic invariant set.

Fig. 1 Critical manifold M = S{ U S/ U S; U S; and the flow of the unperturbed
system of Eq.(2.1).

To show the existence of a stable periodic orbit or a chaotic invariant set, we have to
calculate a succession of the transition maps (Poincaré maps) along the flow of Eq.(2.1) as
Fig.2. Itisshownthat if ¢ > Oissufficiently small, the global Poincaré map is contractive and
thus a stable periodic orbit exists (Fig.3(a)). On the other hand, if £ > 0 increases, the global
Poincaré map proves to have Smale horseshoe and thus the existence of a chaotic invariant
set is proved (Fig.3(b)).

When calculating the transition maps near the fold points L* of the critica manifold, the
blow-up method is effectively used in order to “de-singularize’ the fold points. It is shown
that in the blow-up space, a solution orbit of the system (2.1) is extended along a solution of
the first Painlevé equation.
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Fig. 3 Positional relationship between the rectangle R and its image under the Poincaré map.
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Speakerl] Rodica D. Costin
AffiliationJ Ohio State University

Title] Differential systems with Fuchsian linear part: correction and
linearization, normal forms and matrix valued orthogonal polynomials

Abstractld

Differential systems with a Fuchsian linear part are studied in regions

including all the singularities in the complex plane of these equations.
Such systems are not necessarily analytically equivalent to their lin-
ear part (they are not linearizable) and obstructions are found as a
unique nonlinear correction after which the system becomes formally
linearizable. More generally, normal forms are found.

Linearizability of differential equations is closely related to integra-
bility.

The corrections and the normal forms of are generated constructively,
using expansions in sequences of matrix-valued polynomials which turn
out to have many of the properties associated to classical orthogonal
polynomials.

Definition of orthogonality for the classical Jacobi polynomials for
general weights will also be discussed.



Speakerl] COSTIN, Ovidiu
AffiliationJ Ohio State University

Title] Behavior of lacunary series at the natural boundary (joint work
with M. Huang)

Abstractld

We develop a local theory of lacunary Dirichlet series of the form
> reickexp(—zg(k)), ¢ — oo as z approaches iR. These series occur
in many applications in Fourier analysis, infinite order differential op-
erators, number theory and holomorphic dynamics among others. We
obtain blow up rates in measure along the imaginary line and asymp-
totic information at z = 0.

When sufficient analyticity information on g exists, we obtain Borel
summable expansions at points on the boundary, giving exact local
description. The singular behavior has remarkable universality and
self-similarity features.

The Botcher map at infinity of polynomial iterations of the form
Tni1 = AP(xy), |A] < Ao(P), turns out to have uniformly convergent
Fourier expansions in terms of simple lacunary series. For the quadratic
map P(z) = z—22, \g = 1, and the Julia set is the graph of this Fourier
expansion in the main cardioid of the Mandelbrot set.

The Borel summable transseries gives a detailed description of Julia
sets of classes of polynomial maps.



Speakerl] COSTIN, Ovidiu
AffiliationJ Ohio State University

Title] The one-dimensional Schrodinger equation for potential wells
and barriers. Borel summation and Gamow vectors. (joint work with

M. Huang)

Abstractl]
We analyze the detailed time dependence of the wave function v (z,t)
for one dimensional Hamiltonians H = —D?+ V (x) where V (z) (mod-

eling barriers or wells) and ¢ (x,0) are compactly supported. We show
that the dispersive part of ¢ (its asymptotic series in powers of Y %)
is Borel summable. The remainder, the difference between v (x,t) and
the Borel sum, is a convergent expansion of the form

> (gTk(z)e™ ™)

where the functions I'y(z) are the Gamow vectors of H, and the —~;
are the associated resonances. Generically, all coefficients g € C are
nonzero. For large k, ;. is proportional to klog k + ik Pi%/4.

(Gamow vectors are poles of the analytically continued Green’s func-
tion, and they are generalized eigenfunctions of the Hamiltonian, with
"purely growing” conditions at infinity.)

After Borel summation, the expansion is very rapidly convergent al-
lowing a sharp qualitative and quantitative control on the wave function
for moderate or large time.

The analytic structure of is perhaps surprising: in general (even in
simple examples such as square wells), ¥ (z;t) is given by a lacunary
series.®) turns out to be C™ in ¢ but nowhere analytic on R+ which is
a natural boundary of .



Summability of formal solutions of PDEs
and the geometry of Stokes curves

Yoshitsugu TAKEI
Research Institute for Mathematical Sciences
Kyoto University
Kyoto, 606-8502 Japan

Let us consider the following initial value problem for a partial differential equa-
tion in two complex variables (¢, z) € C:

3} 02
1) <§ - a(z)@) u(t,z) =0,
u(0, 2) = ¢(2).

As one can readily observe, the initial value problem (1) has a solution of the form

2) 1.9 =3 (a5 ) o

77
j=0 I

which is in general divergent for an analytic initial value ¢(z). More generally, such
a formal (divergent) solution (¢, z) also exists for the following equation as well:

0 0
) <§ — P(z, &)) u(t,z) =0,
u(0, z) = ().

Since the pioneering work of Lutz-Miyake-Schéfke for the heat equation (|[LMS]),
many works have been done on the summability of the formal solution (¢, z) for
these initial value problems. See, e.g., [B], [M], [CT], [BL], .... In these works the
case of partial differential equations with constant coefficients are mainly discussed.

In the case of equations with variable coefficients, on the other hand, very few
things are known even for such a simple equation as (1). In this talk, through the
investigation of several typical concrete equations, we would like to show that the
geometry of Stokes curves is related to the summability of (¢, z) in the variable



coefficients case. To be more specific, we apply the Laplace transformation £, .,
for the variable ¢ to Equation (1) and employ the scaling 7 = 12 to obtain a one-
dimensional Schrédinger equation

(4) <§—; _ 2%) V() =0 with o= Lu.

Then we see that the WKB solutions and the Stokes geometry of (4) play an im-
portant role in the study of the resummation of the formal solution (¢, z) of the
original partial differential equation (1). The details will be discussed in the talk.
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Resummation and analytic continuation of an
asymptotic solution of a small denominator problem

Masafumi YOSHINO,
Graduate School of Science, Hiroshima University

1. Linearization problem. Lety = (y1,...,yn) € C", n > 2 be the variable in C". We
consider a semi-simple holomorphic singular vector field X' = Z?Zl aj(y)aiyj, a;(0) =0
(7 =1,...,n) defined in some neighborhood of the origin of C". The following equations
give the change of the coordinates y = x + v(x) which linearizes X

_ - o
(H) e Lv; = \jvj + Rj(x +v(2)), c:jzlijj%j, j=1,...,n,

where R = (Ry, ..., R,) is the nonlinear part of X, R = O(]z|*) when |z| — 0.

We can uniquely construct a singular perturbative solution (SP-solution in short) of (H)
v(z, ) in the form

v(x,e) = Ze‘”vy(x) = vo(x) + e oy (z) 4+ -+ -,

where the sum with respect to ¢ is a formal sum, and v,(x) are vector-valued functions
which are holomorphic in some neighborhood of the origin independent of v.

2. Borel-Laplace resummation. We use the Borel-Laplace transform with respect to
¢ in order to construct an exact solution of (H) although (H) is a semilinear equation.
Let the direction & (0 < & < 27) and the opening § > 0 are given. We define S¢y by
Seo = {e € C; |arge — & < ¢} . Then we have

Theorem 2. (Resummation) . Assume that the Poincaré condition or the following
condition is satisfied.

(0.1) Jt, 0<t<2m, e\, e R\ {0} (j=1,2,...,n).

Then there exist a &, § > 0, a neighborhood U of the origin x = 0 and V(x,¢) such that
V (z, ) is holomorphic in (z,e) € U X S¢ g and it gives a solution of (H). The SP-solution
v(z,€) is the G*-asymptotic expansion of V(z,e) in U X Sgy, when € — oo. Namely, for
each N > 1 and R > 0, there exist C' > 0 and K > 0 such that

N
(0.2) V(z,e) =Y e v (z)| < CKNNIe| 7N,
v=0

for all (z,e) € U x Seg, |e| > R.

3. Analytic continuation of SP-solution. We now study the analytic continuation
with respect to € of the resummed SP-solution, and we apply it to the study of asymptotic
property of divergent series which appears in solving (H) in a small denominator case.
First we study the analytic continuation in the Poincaré case. We recall that there
exist an infinite number of &’s on the right half-plane 3t > 0 for which the resonace
occurs. For the sake of simplicity we call these values of € e-resonances. These values
of € accumulate only at infinity in the Poincaré case, and may accumulate on the real
line in other cases by the assumption (0.1). The resummed SP-solution V' (z,¢) may be

singular with respect to € at these values in view of the proof of Theorem 2. Our first
1



2

observation is that the analytic continuation (with respect to €) of the SP-solution to the
right half-plane is identical with the classical Poincaré series solution. More precisely we
have

Theorem 3. Suppose that the Poincaré condition is verified. Then V(x,¢) is ana-
Iytically continued as a single-valued function of € to a non e-resonant point along any
bounded path which does not meet with the e-resonances . If ¢ = 1 is nonresonant, then
the analytic continuation of the resummed SP-solution to € = 1 coincides with the clas-
sical Poincaré series solution of (H).

Now we study the solvability of (H) without assuming a Diophantine condition. Let o
be a nonnegative integer and I" be an open connected neighborhood of the origin, and

let 0 < ¢ < w/2. We define H, = H,.r as the set of holomorphic (vector) funtions
v(¢) = (v1(Q), ... ,on(C)) of ¢ =n+i& € I' +iR™ such that
0 bl er = S“p/ (C)7e el u(¢)]dé < oo,

nel’ Jrn

where () = 1+ Y7, |Gl €] = €] + -+ + [&l, and [o()] = (L, [0;(¢)[*)'/*. The
space H,.r is a Banach space with the norm (0.3). We define the multi sector S. by

(0.4) Se:=(S)", So={z€C;z=re” |0 <c,r>0}.

Let f(x) be an integrable N- vector function on R, Ry := {t € R;¢ > 0} and let £(0)
be the Mellin transform of f

0.5) fQO=MHEQ) = | fl)a*cde, e=(1,...,1), (=n+i{nel, R,

R}

where 2¢7¢ = x%rl coex$ T C= (G-, G). Tt s easy to see that f(C) is analytic if the
integral (0.5) absolutely converges. The inverse Mellin transform is given by

(0.6) fla) = M~ (f)(x) = (2mi) ™" . fn+i€)a™"" 0 de,
where 7 is so taken that the integral converges. We note that if f € Hy.r, then the
integral (0.6) is a holomorphic function of x in S.. We note that these formulas follow
from the corresponding ones of the Fourier-Laplace transform by the change of variables
e — x;.

We define ‘H,.r as the inverse Mellin transform of H,.r. We note that the Mellin
transform gives the one to one correspondence between the spaces Hyr and H, .. For
u € Hyer we define the norm ||u||y.r of u by

HUHG,CI = IM(U)IJ,c,F-

For an integer k& > 1 we denote by (H,.r)* the product of k copies of Hy.r. The
norm in (Hy.r)* is defined as the sum of the norms of each component. For simplicity,
we denote the norm in (Hy.r)* by || - [|o.cr if there is no fear of confusion.

Let I'g be a connected neighborhood of the origin in R”. Let I'y C —R’} be an open
connected convex cone with vertex at the origin such that (\,n) # 0 for every n € I'y,
n #0. Let T(¢) := T(¢1) - - - T((,), where T'(z2) is the Gamma function. Let R(¢) be the
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Mellin transform of R(¢). We assume that the nonlinear term R;(z) (j = 1,2,... ,n) has
the form
(0.7) Ri(Q)= > ri(OT(C+a) (j=12...,n)

a€Ll
Here 77/(¢) is an entire function such that there exists K > 1 satisfying that |r/(¢)] <
e KIEl /|a|lol when & = 3¢ — oo.

Example. Let a = (a1,... ,ay), ap > 0 and let ¢; be given constants. If R;(z) (j =
1,2,...,n) are given by R;(z) = Cjar®exp(—xy — - -+ — x,), then the condition
(0.7) holds.

a,finite

Let 0 < 6y < 7/2 be a given constant, and let 7y = +7/2. We define the sector 3., g,
with the vertex at € = 1, the direction 7y and opening 6y by

(0.8) Sro00 = 1€ € C;larg(e — 1) — 1] < 6p/2} .

Let V(x,e) be the analytic continuation of the resummed SP-solution given in Theorem
2. Let Se # 0 and let us, for the moment, assume that we can expand

(0.9) V(z,e)=> Vale)z®

in the convergent series of  at x = 0. We note that the radius of convergence of the series
may tend to zero when € — 1 in the case where all A;’s are real numbers. Then we have

Theorem 5. Suppose that the \;’s in (H) are real numbers and nonresonant, \; —(\, o) #
0forallo € Zly, |a| > 2, j =1,2,... ,n. Assume that (0.7) is satisfied. Then there exist
Ky > 0 and an integer ko > 0 such that if ||R||k,.cr, < Ko and ||V R|k,.cr, < Ko, then
there exists u(x, €) holomorphic in (x,€) € S. X Sy, g, such that, for every N =0,1,2,... |
there exists Ry(x,e) being holomorphic in (x,€) € S, X Sy, 4, and satisfying Ry(z,¢) =
O(|z|N*1) as |x] — 0, (z,€) € Se X Syy6, Such that

(0.10) u(z,e) — Z Va(e)z® = Ry(x,e), (x,€) € Se X Spy.0,-

la|<N
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A polynomial diffeomorphism f : C% — C2

" (2 - ()

is called the (complex) Hénon map , where a # 0 and b # 0 are complex numbers, and fixes the following two
points:

bo1Eb 1DPrde b 1+ D2+ da
2a ’ 2a '

Let P = (zs,ys) be one of them, and let @ = a; be an eigenvalue of the derivative Dfp at P. Then we have the
quadratic equation

(2) o> da b=0,

where A = 2axy, and another eigenvalue ay of Dfp coinsides with A a = b/a. As usual, define the stable
and unstable manifolds at P by

W*(P) {Q e C?|f"(Q) — P asn — oo},
W“P) = {QeC*f"(Q)— Pasn— oo}

respectively. It is well-known that if P is a saddle point, i.e. 0 < |a1] < 1 and |as| > 1, then W#(P) is actually an
analytic submanifold of C? which is an injective immersion of the complex plane C, and tangent to the eigenspace
for oy in the tagent space TpC? at P, and the similar fact for W*(P) holds.

We construct a novel function in order to describe the stable and unstable manifolds of the Hénon map which
is constructed by the use of Borel-Laplace transform.

Let o be one of eigenvalues of the derivative Dfp of the Hénon map f at a fixed point P = (zf,y5). We
consider an f-invariant curve at P = (xf,ys) parameterized by the complex variable ¢t € C as follows:

= (o) = (50)

F(30) - () - (R

Replacing X (¢) and Y (¢) as «(¢) and y(t) again, the following difference equation of the second kind is obtained

such that

(3) z(t+1) Ax(t) bt 1)= a{zt)}?,

together with y(t) = bx(t 1).
In order to solve (3), we express z(t) with the Laplace integral on some Riemann surface X;

(4) £(t) = LIX](t) = / e~ SUX(C)dC

~



where the contour 7 is chosen depending on the positions and the form of branch points of X. Substituting (4)
into (3), we obtain an integral equation for X (¢):

(5) AX = aX*X+C,

where C(C) is an entire function of exponential type, A(() =e™¢ X be¢, and * denotes the convolution defined
by

¢
P = [TFC OGENC
0
Setting
(6) X(¢) = a0+ X(¢),
and substituting (6) into (5), we have
(7) AX +2aagx X = W.

where W =W, aX * X and Wy = aa?¢ apA+ C.
We expand X (¢) and W (¢) with a formal parameter o as

X(©) =) o"Xu(Q), W(Q) =) o""Wa(0).
n=1 n=0
Substituting these into (7), we have the solution X,, (n =1,2, )
- cw!
(8) X, = A—lFO/ Wotger (n=12,...),
o Fo

where W/ _, = dvzz,{
Let o # 0 be one of eigenvalues of the derivative D fp at P. We define the lattice T, generated by log|a| as
follows. For k € Z, let {, = p+ (2km +0)i  (x1, where

p=loglal, T<f=arga m,

and let
N

(9) FQZ{CGC | C:ZCkla Ckl:lp+(2k77+9)lv N=1,2, }
=1

It is easy to see that T, is on the right half plane of C if 0 < |a] < 1, on the left half plane if |o| > 1, and on the
imaginary axis if || = 1. Note that T, is dense in the imaginary axis in the case of || = 1 (see Figure 1).

Lemma 1 Let |a| # 1. For ¢ € C\T\, and a path w from the origin to ¢ in C\ Ty, there is a smooth path § from
the origin to ¢ homotopic to w in C\ Ty, such that (/2 € § and 0 is symmetrical with respect to (/2.

Theorem 1 Let ¢ = (v +& (|| < p, k € Z) and 0 be a path from the origin to ¢ in C\Ty. Then the solution
X(¢) = X(¢,0) to Eq. (7) is given as the limit of a Riemann suface XN (¢):

X(¢) = lim X™M(g), X<N>(<>=i5<£ﬁ><<).
n=1

The convolution WSR (¢) and the solution X,(LN)(C) (N 2) are given by

) S0 U 1€ log€)" +reg® V), (1w N )
anl(CkN + f) =
32 0 i €M loge)N 4 reg™D(€),  (n N)

TN ( ) > om0 bgtjj[n)a+n—1§m+n_l(10g§)"+reg("_1)(§), 1 n N 1
Xn CkN"‘f =

o B € (0ge)N +reg N D), (0 W)
(10)
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Figure 1: Lattice I', and path ¢ (thick solid curve), where we set 0 < || < 1 and 6 = 0 in (.

where v,(fplymj%fl and bgl man—1 are complex coefficents which do not depend on the choice of the vertical index k
in the N-th singularity. The notation reg™ 1) is given by

n—1

reg" V(&) = Y Rpn(€)(logd)™

m=0
where Ry, (€) = x + & + €2 + (m=0,1,2, ) is a reqular function with complex coefficients *’s.

_ From now on, we drop the index k and rewrite the N-th singularity (xn as (. Thus, we obtain the solution
XN)(¢) for the N-th singularity

55“(0

MS

XM

3
Il

(11) -

”MS

Zbé%n (C )™  log(¢ Gl +reg™ (¢ Cw).

For the coefficient bglj\;)I 4n_1 in the solution )NQ(LN) for the N-th singularity ( = {y (N 1), the following lemma
holds.

Lemma 2 There exist constants C > 0 and K > 0 which depend on the eigenvalue «, and the first coefficient
bN) and the higher order coefficient bn man—1 (m =20,1,2, ) of the n-th convolution for n. N in the N-th

n,n—1
solution X,(L (v + &) are estimated as

NlogN
COECO
’ n:
N n|.(N
| ’EL,TBL-‘:—YL—I K |b( ) |

forallm N (N 1)
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Quantum tunneling for one dimensional systems is well captured by the established semiclassical
method, i.e., instanton[1], which is also applicable, ignoring rigorousness of mathematics, to
multi-dimensional tunneling if a system under consideration is integrable. However, this is
not the case for non-integrable systems, because invariant manifolds formed by first integrals,
i.e, tori, are partially or completely broken in the phase space for non-integrable systems and
instanton that is a periodic (or regular) trajectory of imaginary time evolution loses the guiding
manifold, i.e., torus extended into the complex domain. Actually, there observe numerically
and experimentally many complicated tunneling phenomena, which can not be explained by
the instanton theory. In recent years, many authors have made significant contributions to
progress in the semiclassical description of tunneling for multi-dimensional systems|2].

Two-dimensional barrier systems are the most simplified class of systems which exhibit tun-
neling inherent in multi-dimensional systems and most of them are non-integrable in the sense
of Painlevé test. Two different semiclassical mechanisms may work on two-dimensional barrier
tunneling, i.e., the well-established instanton mechanism and the recently discovered mecha-
nism utilizing complexified stable-unstable manifolds as the guide of tunneling paths[3]. The
new mechanism is explained as follows: on the potential barrier there always exists an unstable
periodic orbit (PO) dividing the transmitted side from the incident side. The PO is accompa-
nied by the manifolds, called stable (unstable) manifold, on which all the trajectories approach
to (separate from) the PO. The stable manifold Wy of PO always intersects with the initial
manifold Z supporting the incident quantum state, if both manifolds are extended into the
complex phase space. There exist complex tunneling trajectories starting from a neighborhood
of the intersection and approaching exponentially the real phase space along the stable and
unstable manifolds. It was also confirmed that this tunneling mechanism also works in the case
that chaos exists in the real space[4].

The new mechanism, namely stable-unstable manifold guided tunneling (called SUMGT for
brevity), rules tunneling, when the contribution of SUMGT trajectories overcomes instanton.
Actually SUMGT violates instanton mechanism in this case. There is another interesting regime
in some ranges of parameters, in which both mechanisms, instanton and SUMGT, simultane-
ously contribute to tunneling, though SUMGT makes less contributions. So the mechanism
ruling the tunneling process changes between the two regimes. In this talk, we first clarify
the difference between instanton and SUMGT from the view points of complexified classical
dynamics and complexified semiclassical method, and demonstrate how the transition between
the two mechanisms occurs making a remarkable change in the spectrum of tunneled particles.

The model system we study is given by

1
H(Q,P,wt) = 5P2 + (1 + esinwt)sech?Q. (1)
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Figure 1: Tunneling spectra (absolute value of the S-matrix) at three representative values of
the perturbation strength: (a) e = 0.1, (b) e = 0.2, and (c) e = 0.4. Es is the output energy
and the input energy is chosen as E; = 0.5. w = 0.3 and i = 1000/(37 x 2!9) ~ 0.1036.

Here a plane wave with a constant input energy Fq = 0.5 is incident. For a strong perturbation
at € = 0.4, the spectrum envelop forms a plateau spread over a wide range of energy, whose
width corresponds to oscillating range of real unstable manifold W,r at an asymptotic side
(|Q| > 1). This characteristic spectrum is the result of SUMGT. On the other hand, for a
weak perturbation at ¢ = 0.1, the spectrum is localized around FE4, for which instanton must be
available. The interesting case appears for an intermediate strength at ¢ = 0.2. The spectrum
seems to be constructed by the superposition of two characteristic spectra: a head lobe will be
explained by perturbed instanton theory, while a wide shoulder over an upper range of energy
will be formed by SUMGT. Thus, the two tunneling mechanisms will coexist in this case. We
explore what kind of change occurs with increase of € from the semiclassical point of view.
The semiclassical S-matrix is given by [5]

VIBIP] [ 9°Ss

S(Ey, Ey) ~  lim Z

Q1] Q2|—>oo vV 27TZhP1P2 8E18E2
< e~ (P2Q2_P1Q1)/heﬁSS(QQ,E%QLEl)’ (2)

where Sg = fgf PdQ — fttf H(Q, P,wt)dt + Eqty — Eqty is the classical action. The summation
> et is taken over all the contributing trajectories satisfying the input and final boundary
conditions [5]. The coordinate @Q; and momentum P; (or energyFE; = P?/2) at the input side
(¢t = 1) and at the output side (i = 2) are observed quantities and should be taken as real
values, whereas times ¢; are unobserved and can take complex variables. We can regard (Q, P)
as functions of the lapse time s =t —¢; (€ C), initial time ¢; (€ C) and the set of fixed initial
values (Q1, P1) (€ R%,Q1 > 0). Then, the initial manifold is defined by Z = {(t1,Q, P)|t; €
C.Q=Qi,P =P}



The intersection t1. of Z with Wy in the complex domain is obtained by using Melnikov-type
method and the imaginary part of ¢1. is given by

1 1-F
Imt, = —cosh_l{il}, (3)
w (1 = x(w))
where x(w) is defined by x(w) = 2w [5° % ds. Then, the imaginary depth of the critical

point Imt;. decreases with increase of €. There always exist SUMGT trajectories starting in a
small neighborhood of ¢1.. On the other hand, the imaginary time evolution of the instanton is
estimated by ;s = —im/\/2F5.

Comparison of Imt,. with Imt;,s gives the criterion to judge which semiclassical mechanism,
instanton or SUMGT, dominates the tunneling process. If the condition Imt1. > 1.5|Imt ;s
is well satisfied, the barrier-penetrated tunneling, namely instanton, dominates the tunneling
process, otherwise the critical point t1. destroys the instanton mechanism and only tunneling
trajectories of SUMGT which go over close to the barrier top contribute to forming a plateau
spectrum. However even if the above condition is satisfied, the trajectories of SUMGT still
survive and contribute to forming a shoulder part of the spectrum.

Further, combining the Melnikov-type method with a low-frequency approximation allows
exploring more detail properties of SUMGT trajectories starting from the neighborhood of ¢;..
It is very important to consider geometric structure of stable and unstable manifolds extended
into the complex domain, which guide the SUMGT trajectories. Movable singularities of the
classical solution exhibiting anomalous movement on stable and unstable manifolds also play a
key role. Details will be discussed in the talk.
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